Stromal cells also known as mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent, self-renewable cells that are capable of trilineage differentiation (mesoderm, ectoderm, and endoderm). The pluripotency and immunomodulatory features of MSCs mean that they are an effective tool in cell therapy and tissue repair.
Vshivkova | Shutterstock
Mesenchymal stem cells are easy to isolate and culturally expandable in vitro for long periods of time without losing their characteristics. They are able to trans-differentiate into ectodermal cells and endodermal cells. Moreover, due to their abundance in the adult body, research on these cells does not require ethical approval. MSCs are also safer than iPSCs, with no risk of teratoma formation. This makes them ideal candidates for cell therapy.
The International Society for Cellular Therapy provides the following guidelines on mesenchymal stem cells:
Figure 2. Summary of the ISCT criteria for identifying MSCs for research purposes. Image Credit: PromoCell GmbH. (1) MSCs must be plastic-adherent under standard culture conditions. (2) MSCs must express the surface antigens CD105, CD73, and CD90. A lack of expression of hematopoietic antigens (CD45, CD34, CD14/CD11b, CD79a/CD19, HLA-DR) is recommended, along with a minimum purity of 95% for CD105, CD73, and CD90 positive cells and 2% expression of hematopoietic antigens. (3) MSCs must be shown to be multipotent and be able to give rise to adipocytes, osteoblasts, and chondrocytes under the standard in vitro tissue culture-differentiating conditions.
Mesenchymal stem cells are present in almost all tissues. A significant population of mesenchymal stem cells has been derived from the bone marrow. Cells exhibiting properties of mesenchymal stem cells have also been isolated from adipose tissue, dental tissues, amniotic membrane and fluid, placenta and fetal membrane, endometrium, menstrual blood, peripheral blood, synovial fluid, salivary gland, limb bud, skin and foreskin, sub-amniotic umbilical cord lining membrane and Whartons jelly.
Despite relatively low numbers of MSCs in bone marrow aspirates, there is a keen interest in these cells as they can be easily isolated and expanded in culture through approximately 40 population doublings in 8 10 weeks.
Bone marrow is considered to be the best source for mesenchymal stem cells and used as a benchmark for comparison of MSCs obtained from other sources.
Mesenchymal stem cells obtained from bone marrow, peripheral blood and synovial fluid are obtained using Ficoll density gradient method. MSCs obtained from other tissue sources, such as adipose, dental, endometrium, placenta, skin, and foreskin, and Whartons Jelly are obtained after digestion with collagenase.
Mesenchymal stem cells isolated from different sources are cultured in Dulbeccos modified Eagles medium (DMEM), DMEM-F12, a-MEM (minimal essential medium), DMEM supplemented with low or high concentration of glucose and RPMI (Rosewell Park Memorial Institute medium). The culture medium was supplemented with either 10% fetal bovine serum (FBS), new-born calf serum (NBCS) or fetal calf serum (FCS).
The cells showing positive expression for CD63, D90, and CD105, and lack of expression of CD14, CD34, CD45, and HLA-DR are considered as MSCs. In addition to the above-mentioned markers, MSCs also express CD29, CD44, CD146, and CD140b, depending on the tissue of origin.
Stage-specific embryonic antigen (SSEA)-4, CD146 and stromal precursor antigen-1 (Stro-1) are the hallmarks of mesenchymal stem cells. Stro-1 is positively expressed in bone marrow and dental tissue, but negative in human adipose-derived MSCs.
It is a challenge to obtain an adequate number of cells for clinical applications as they tend to lose their potency during sub-culturing and at higher passages.
Early mesenchymal stem cells show high differentiation potential into chondrocytes, osteocytes, and adipocytes. However, long-term culture and higher passages cause senescence characterized by a decrease in differentiation ability, shortening of telomere length and an increased probability of malignant transformation.
Serum and growth factors impact the properties of mesenchymal stem cells during in vitro culturing. MSCs culturing requires 10% FCS, but MSCs retain FCS proteins that may trigger an immunologic response in vivo.
When mesenchymal stem cells are expanded in serum-free media, there is a gradual decline in differentiation potential and telomerase activity. However, the cells are resistant to malignant transformation and can be expanded at higher passages.
Mesenchymal stem cells have been shown to suppress the excessive immune response of T and B cells, as well as dendritic cells, macrophages and natural killer (NK) cells by a mechanism that involves the combined effect of many immunosuppressive mediators. Most of the mediators, such as nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), tumor necrosis factor-inducible gene 6 protein (TSG6), CCL-2, and programmed death ligand 1 (PD-L1) are inducible by inflammatory stimuli.
Although these factors show minimal expression in inactivated mesenchymal stem cells, they can be stimulated by inflammatory cytokines, such as interferon gamma (IFN-g), Tumor necrosis factor alpha (TNF-a) and interleukin -1 (IL-1). MSCs expressing IDO following stimulation with IFN-g catalyze the conversion of tryptophan to kynurenine, which causes the inhibition of the pathway for T-cell proliferation.
Production of NO by mesenchymal stem cells also inhibits T-cell proliferation. MSCs inhibit the maturation of monocytes to dendritic cells leading to reduced T-cell activation. Mesenchymal stem cells also inhibit the upregulation of CD1a, CD40, CD80, and CD86 during DC maturation. Finally, they inhibit the secretion of TNF-a, IFN-g, and IL-12 in dendritic cells and increase the levels of IL-10, inducing a more anti-inflammatory dendritic cell phenotype.
The secretion of soluble factors such as transforming growth factor (TGF-b) and prostaglandin E2 (PGE2) and direct cell-cell contact between MSCs and natural killer (NK) cells suppress the proliferation of NK cells. Cell-cell contact of MSCs through PD-1 binding to its ligand may also be responsible for inhibition of T-cell proliferation.
Continued here:
What are Stromal Cells (Mesenchymal Stem Cells)?
- Fate and long-lasting therapeutic effects of mesenchymal stromal/stem ... - February 6th, 2025
- Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2 - Nature.com - January 31st, 2025
- The role of ultrasound combined with water bath in the establishment of animal models of rat urethral stricture - Nature.com - January 25th, 2025
- Why exosome therapy is 2025s It skincare trend - Harpers Bazaar India - January 23rd, 2025
- Identification of glutamine as a potential therapeutic target in dry eye disease - Nature.com - January 23rd, 2025
- Polycystin-1 regulates tendon-derived mesenchymal stem cells fate and matrix organization in heterotopic ossification - Nature.com - January 21st, 2025
- Correction: Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea -... - January 21st, 2025
- Adipose-Derived Stem Cell Therapy Combined With Platelet-Rich Plasma for the Treatment of Avascular Necrosis of the Talus - Cureus - January 19th, 2025
- Q&A: Mesenchymal stem cells where do they come from and is ... - January 19th, 2025
- An overview of mesenchymal stem cells and their potential ... - January 19th, 2025
- Senescent mesenchymal stem/stromal cells and restoring their cellular ... - January 13th, 2025
- Mesenchymal Stem Cells and Reticulated Platelets: New Horizons in ... - January 13th, 2025
- Mesenchymal Stem Cells/Medicinal Signaling Cells (MSCs) - GlobeNewswire - January 13th, 2025
- A SAGE View of Mesenchymal Stem Cells - PMC - January 13th, 2025
- Mesenchymal stem cell perspective: cell biology to clinical progress - January 3rd, 2025
- Canid alphaherpesvirus 1 infection alters the gene expression and secretome profile of canine adipose-derived mesenchymal stem cells in vitro -... - December 28th, 2024
- MSC-derived exosomal circMYO9B accelerates diabetic wound healing by promoting angiogenesis through the hnRNPU/CBL/KDM1A/VEGFA axis - Nature.com - December 27th, 2024
- Korean researchers prove stem cell therapys effectiveness for hereditary cerebellar ataxia in animal models - KBR - December 25th, 2024
- FDA Approves First MSC Therapy in Steroid-Refractory GVHD - www.oncnursingnews.com/ - December 25th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid ... - December 22nd, 2024
- FDA Approves Mesenchymal Stromal Cell Therapy for Refractory Acute GVHD in Kids - Medpage Today - December 20th, 2024
- FDA Grants First-Ever Approval for MSC Therapy to Australian Company Mesoblast After Attempting for 4 Years - geneonline - December 20th, 2024
- Mesoblast's Cell Therapy Treatment For Graft Versus Host Disease Gets FDA Approval, Stock Surges - Benzinga - December 20th, 2024
- Mesoblast finally pushes GvHD cell therapy over finish line - pharmaphorum - December 20th, 2024
- Mesenchymal stem cells in health and disease - PubMed - December 19th, 2024
- Mesoblast's RYONCIL is the First U.S. FDA-Approved Mesenchymal Stromal Cell (MSC) Therapy - The Manila Times - December 19th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid-refractory Acute Graft-versus-host Disease - PR Newswire - December 19th, 2024
- RFK Jr. could prove a surprise boon for stem-cell stocks with pivotal year ahead - MarketWatch - December 17th, 2024
- An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung - Science - December 15th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Eterna Therapeutics Launches Research to Evaluate its Lead Induced Mesenchymal Stem Cell Therapy Candidates (ERNA-101) Ability to Induce and Modulate... - December 7th, 2024
- Enhanced osteogenic potential of iPSC-derived mesenchymal progenitor cells following genome editing of GWAS variants in the RUNX1 gene - Nature.com - December 7th, 2024
- Exploring the potential of MSCs in cancer therapy - News-Medical.Net - December 5th, 2024
- Eterna Therapeutics Partners with MD Anderson to Advance Cancer Cell Therapy Research | ERNA Stock News - StockTitan - December 5th, 2024
- How breast cancer cells survive in bone marrow after remission - Medical Xpress - December 5th, 2024
- A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes... - December 1st, 2024
- Mesenchymal stromal cells alleviate depressive and anxiety-like ... - December 1st, 2024
- Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus ... - December 1st, 2024
- Exploring mesenchymal stem cells homing mechanisms and ... - PubMed - November 26th, 2024
- Macrophage tracking with USPIO imaging and T2 mapping predicts immune rejection of transplanted stem cells - Nature.com - November 26th, 2024
- IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity - Nature.com - November 26th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - November 26th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 25th, 2024
- Engineering bone/cartilage organoids: strategy, progress, and application - Nature.com - November 25th, 2024
- Proteomic analysis of human Whartons jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic... - November 20th, 2024
- Clinical outcomes of autologous adipose-derived mesenchymal stem cell combined with high tibial osteotomy for knee osteoarthritis are correlated with... - November 20th, 2024
- Mesenchymal stem cells lineage and their role in disease development - November 18th, 2024
- Mesenchymal Stem Cells - SpringerLink - November 18th, 2024
- Exosomes: The Insulin of Our Era? - University of Miami - November 18th, 2024
- Partner Perspectives: Mesenchymal Stromal Cells Could Serve as Preventive Therapy for Chronic Radiation-Induced Dry Mouth - OncLive - November 10th, 2024
- Skin-care founder Angela Caglia on the stem cell technology that created 437% sales growth: 'It's transformed the business' - Glossy - November 8th, 2024
- Substantial Overview on Mesenchymal Stem Cell Biological and Physical ... - November 8th, 2024
- Regenerative Medical Technology Group Announces the Opening of New Clinic in Dubai on November 23 - Newswire - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - StockTitan - November 8th, 2024
- Stem cell science is dominating the luxury skin-care market as human-derived ingredients become less taboo - Glossy - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - The Manila Times - November 8th, 2024
- SMART researchers develop a method to enhance effectiveness of cartilage repair therapy - MIT News - October 25th, 2024
- Biological functions of mesenchymal stem cells and clinical ... - October 24th, 2024
- Chemical-defined medium supporting the expansion of human mesenchymal ... - October 24th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - PMC - October 24th, 2024
- Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools - Nature.com - October 20th, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 20th, 2024
- Sources and Clinical Applications of Mesenchymal Stem Cells - October 20th, 2024
- Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth - Nature.com - October 18th, 2024
- Researchers pioneer novel method to enhance effectiveness of MSC therapy for cartilage repair - Medical Xpress - October 18th, 2024
- Healing begins with research: Promising development program on stem cells in rare diseases - Yahoo! Voices - October 15th, 2024
- Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles - Nature.com - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - Health Tech World - October 14th, 2024
- miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration - Nature.com - October 11th, 2024
- Effects, methods and limits of the cryopreservation on mesenchymal stem ... - October 10th, 2024
- ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m6A modification of VDAC3... - October 10th, 2024
- Mesenchymal stromal cells: Biology of adult mesenchymal stem cells ... - October 8th, 2024
- Clever Robotic clothing and manufactured stem cells to treat cancer among revolutionary healthcare tech projects - University of Strathclyde - October 8th, 2024
- Dr. Peisong Gao, MD, PhD - Hopkins Medicine - October 4th, 2024
- Research to Boost Bone Formation Informs Orthopaedic Treatments - October 4th, 2024
- Garza Laboratory - Johns Hopkins Medicine - October 4th, 2024
- Stem Cell Treatment Promises to Prevent Disease and Slow Aging - Newsweek - September 30th, 2024
- Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells - Journal of Translational... - September 28th, 2024
- A mathematical insight to control the disease psoriasis using mesenchymal stem cell transplantation with a biologic inhibitor - Nature.com - September 20th, 2024
- Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production -... - September 20th, 2024
Recent Comments