In 2009, Time magazine declared cultured meat one of their top 50 inventions of the year for its potential to curb the carbon footprint of industrial farming. This promising idea has since become a booming industry. Ever since Dutch researcher Mark Post debuted the first lab-grown hamburger in 2013 a $325,000 patty with an intense flavor that took two years to dish up nearly 60 companies have sprung up around the globe in pursuit of growing the perfect cut of cultured meat. In the first quarter of 2020 alone, $189 million was poured into these companies. Now that its gone from pipe dream to industry, what is stopping lab-grown meat from being available in a supermarket near you?
The chief hurdle is cost, which is related to what is known in the biz as the scalability problem." Every single slab of meat is an intricate mosaic of billions of cells of different types nerve cells, muscle fibers, fat cells, and more that lend a cut its specific flavor and texture. Researchers have spent years working out how to grow and sustain cultures of cells large enough to make meals at scale. Unfortunately, the mature cells that make up meat are only able to divide a certain number of times before they lose steam, a phenomenon known as senescence. Even if current methods could be expanded, the bulk wouldnt be considered truly clean; the nutritional soup used to grow most meat cultures relies on fetal bovine serum extracted from the blood of unborn cows.
A new ray of hope and innovation has come from a group of researchers taking a very different tack, coupling the raw potential of a special kind of stem cells, known as pluripotent stem cells, with a trick of genetic engineering. Pluripotent stem cells are often called the master cells of the body because they can differentiate into any cell type. Even niftier, these cells can divide endlessly and dont rely on fetal bovine serum to sustain their growth, providing a theoretically limitless supply of cells to serve as precursors to those that make up your favorite cut of meat. Differentiation from a pluripotent stem cell into a mature cell type can take months when left to nature, but neuroscientist Mark Kotter discovered a genetic workaround that cuts the process down to just a matter of days. Kotters technology, dubbed opti-ox, has opened the doors to streamlining the production of billions of cells of your choosing. While opti-ox was first developed to create an unlimited and consistent supply of human neural cells for research, its potential for the clean meat industry caught the eye of Daan Luining, the founder of Dutch-based food tech startup Meatable. The great challenge for them was transforming these animal stem cells into something consumers could eat.
They started a collaboration with a research team led by bit.bio biologist Anne-Claire Guenantin. Guenantin, a pluripotent stem cell expert, had never worked on cultured meat before and was now at the forefront of a massive breakthrough. Right as the project picked up steam, the coronavirus pandemic shut down the world. But Guenantin and her team werent about to let that stop them.
Guenantins entrance into the field was, in her words, by a bit of serendipity. Her roots are in biomedicine, investigating how pluripotent stem cells could be used to treat certain laminopathies, a group of rare genetic disorders resulting from mutations in genes that support the structural integrity of the cells nucleus. During graduate school, she became an expert in cardiac differentiation of pluripotent stem cells, transitioning in her postdoctoral career to a new system: adipocytes, or cells specialized for storing fat. Together with adipocyte expert Nolwenn Briand, she developed and patented one of the first procedures of its kind to derive these fat-storing cells from pluripotent stem cells.
Pluripotent pork cells differentiated into fat (red) and muscle (green) in 7 days.
Meatable
As Guenantin was emerging as a leader in adipocyte differentiation, she became increasingly curious about making the transition from academia to industry. I wanted to do more concrete science, she explains. While a postdoctoral fellow at the University of Cambridge in Prof. Antonio Vidal-Puig's laboratory, she met Thomas Moreau, Head of Research at bit.bio, who introduced her to the opti-ox system. He showed her research group a video of muscle cells differentiating from pluripotent stem cells in just ten days. I knew this is one of the most difficult cell types to [differentiate] from stem cells. I was blown away. The breakthrough made her next career step clear. I knew I wanted work there. That was it.
Luckily for Guenantin, bit.bio was in search of a researcher to work out how to differentiate pluripotent porcine stem cells into the characteristic muscle and fat cells needed to make tasty pork. Guenantin is one of only a few experts in adipocyte differentiation, in part because there is less interest in research around fat stem cell therapies compared to treatments centered on cardiac or neuronal cells. Her expertise in this niche field uniquely positioned her for this monumental task. When she was hired at bit.bio Kotters company holding the opti-ox technology she was tasked with programming the fate of Meatables cells.
Guenantins first challenge was to figure out how to sustain and grow a culture of pluripotent stem cells derived from pork. Its a really different thing to cultivate animal cells than to cultivate human cells, she says. The promise of human stem cell therapies has flooded the research field with standardized protocols and tried-and-true chemical reagents needed to reliably grow a healthy culture of human cells. The same isnt true for culturing stem cells from animals like pigs and cows. Guenantin estimates that the field is 15 years or so behind human cells.
After months of mining the literature, testing various recipes for growth media, and piloting different environmental conditions, Guenantin was able to find the right formula for growing a seemingly endless pool of happy and healthy pluripotent porcine stem cells. It was crazy interesting and really took teamwork, she stresses. Nothing would have happened without all the input from people working in the lab.
The next piece of the puzzle was led by stem cell biologist Sara Gomes, who worked to genetically engineer the opti-ox system into the expectant stem cells. Gomes and Guenantin worked together to figure out how to drive differentiation of the stem cells into the desired muscle and fatty cell fates. While the researchers at bit.bio had a protocol in place for differentiating human muscle from stem cells, it had to be adapted to suit the subtleties of pork muscle. Guenantin recalls, Differentiating the muscle cells was relatively straightforward, but for differentiating adipocytes thats where my expertise came in.
Guenantin and Gomess work at the lab bench was aided by the addition of two new research assistants to the team: Madeleine Garrett and Patrick Thomas. But right as their team expanded, the coronavirus pandemic hit. Guenantin, who was pregnant at the time, had to pull back from her work in the laboratory. As she notes, At this point, we didnt know if it was okay for pregnant women to go to work.
Gomes was left to supervise the work in the lab, which adjusted to staggered shifts to comply with public health guidelines, with Guenantin overseeing and advising on the project from home. The first shifts were stressful and bumpy, Gomes admits, But we quickly reached an efficient way of dividing the workload. The team had daily meetings over Zoom, both to discuss progress on the project and to check in with each other. I wanted to make sure everyone was okay, Guenantin notes. In the beginning, it was okay, but then back in May, [the pandemic] began feeling long and difficult.
The team, from left to right: Anne-Claire Guenantin, Madeleine Garrett, Patrick Thomas, and Sara Gomes.
But COVID-19 did not deter their progress. They worked through the spring and summer of 2020, alternating shifts in and out of the lab, to fine-tune a protocol that would reliably re-program the opti-ox-expressing stem cells into the cells of their choosing. Its a sum of small victories, Guenantin says. We celebrated every step because you have to do that as a scientist. If you dont, you become depressed because basically its never working until its working. To ensure the final cells were up to snuff, the team ran a series of tests to characterize the newly differentiated cells, tapping into Guenantins expertise in fat cell form and function until they were satisfied with the end result. They passed the pork cells over to their colleagues at Meatable who then got to work growing the cultures in bioreactors that provide a three dimensional scaffold for the cells to grow and take shape.
Meatable has continued to raise money to support bringing in $60 million through a combination of Series A funding and support from the Eurostars Programme. In the meantime, Guenantins team and their counterparts at Meatable continue to refine their methods to deliver pork muscle and fat at scale and have begun to turn their attention to stem cells derived from cows.
In the meantime, regulators recognize the demand for a future of clean meat, with Singapore becoming the first country to approve a lab-grown meat product in December 2020. The appeal of cultured meat cuts across a wide swath of consumers, including those passionate about cutting carbon emissions, those seeking to spare animals from the cruel conditions of factory farming, or ones looking for innovative ways to feed the worlds ever-growing population.
This project has raised a lot of questions for me, Guenantin says. It mades me think about the future generations and how this problem of global warming will end up. We need to think about innovative solution to feed the growing planet with tasty and sustainable products.
Read the original post:
- Catapulting Stem Cell Research into the Future: Innovation and Global Impact at ISSCR 2025 in Hong Kong - geneonline - January 9th, 2025
- Stem cell transplant research breakthrough gives hope to those with blood cancer - University of Birmingham - November 29th, 2024
- Accelerating stem cell research - The University of British Columbia - November 22nd, 2024
- ISSCR Guidelines for Stem Cell Research and Clinical ... - PubMed - October 18th, 2024
- Induced pluripotent stem cell-derived mesenchymal stem cells: whether ... - October 18th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - October 8th, 2024
- New Facility Will Expand UC Merced's Groundbreaking Stem Cell Research - University of California, Merced - October 2nd, 2024
- Cell and Gene Therapy Research To Benefit From New Stem Cell Collection Center - Technology Networks - September 26th, 2024
- Scientists in Madison studying synthetic materials with applications in stem cell research - Wisbusiness.com - September 26th, 2024
- OpRegen (RG6501) Phase 1/2a Results to Be Featured at International Society for Stem Cell Research (ISSCR) 2024 Copenhagen International Symposium -... - September 26th, 2024
- Stem Cell Therapy Research: Creative Biolabs Advances iPSC-Derived Macrophage Solutions - openPR - September 20th, 2024
- Stem Cell Research About Stem Cells - September 20th, 2024
- $34 million for research into stem cell therapies for osteoarthritis and other conditions - BioMelbourne Network - September 18th, 2024
- $55 million for stem cell therapies, data infrastructure and research into rheumatoid arthritis - Department of Health - September 10th, 2024
- Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth - Nature.com - August 24th, 2024
- Stem Cell Therapy Market is expected to generate a revenue of USD 31.41 Billion by 2030, Globally, at 13.95% CAGR: Verified Market Research -... - August 16th, 2024
- Stem Cell Therapy Market is expected to generate a revenue of USD 31.41 Billion by 2030, Globally, at 13.95% CAGR: Verified Market Research - PR... - August 12th, 2024
- Advanced Parkinsons in a dish model accelerates research Harvard ... - August 10th, 2024
- Understanding Stem Cell Research | UCLA BSCRC - August 6th, 2024
- TREEFROG THERAPEUTICS PARTICIPATES IN AN INNOVATION SHOWCASE & POSTER SESSION AT THE INTERNATIONAL SOCIETY FOR STEM CELL RESEARCH (ISSCR) ANNUAL... - July 12th, 2024
- Familiar face to take over as CEO of California's stem cell research funding agency - The Business Journals - July 12th, 2024
- Factor Bioscience to Deliver Six Presentations at the International Society for Stem Cell Research (ISSCR) 2024 Annual Meeting - The Malaysian Reserve - July 12th, 2024
- Research harnesses machine learning and imaging to give insight into stem cell behavior - Medical Xpress - July 5th, 2024
- Stem Cell Research Uncovers Clues to Tissue Repair That Could Help Heal the Uterus and More - Yale School of Medicine - May 29th, 2024
- Theradaptive Secures Landmark Funding from Maryland Stem Cell Research Fund (MSCRF) to Support Human ... - PR Newswire - May 27th, 2024
- Unparalleled Research on Adipose Tissue-Derived Stem Cell Therapy Market With Current and Future Growth ... - openPR - May 15th, 2024
- 100 plus years of stem cell research20 years of ISSCR - PMC - March 26th, 2024
- Stem Cell Science and Human Research Studies Ahead of Cargo Arrival - NASA Blogs - February 18th, 2024
- Stem cell research project to launch into space - Fox Weather - January 24th, 2024
- Breakthrough in cancer research opening up stem cell therapy to more people. How you can get involved - 69News WFMZ-TV - January 20th, 2024
- Stem Cell Research Heading to the ISS on Axiom Mission 3 - ISS National Lab - January 18th, 2024
- No, Rep. Steve Scalise Didn't Vote Against Stem Cell Research From Which He Is Now Benefiting - The Dispatch - January 12th, 2024
- Applications are open for the Maryland Stem Cell Research Fund - Technical.ly - January 4th, 2024
- Global Stem Cell Therapy Market to Reach USD 928.6 Million by 2031: Says Allied Market Research - Yahoo Finance - November 19th, 2023
- Current state of stem cell-based therapies: an overview - PMC - November 3rd, 2023
- Dynamic Stem Cell Therapy Uncovers Research in Advance Regenrative Medicine - Yahoo Finance - November 3rd, 2023
- Research Fellow (Aging and Cancer Stem Cell Laboratory ... - Times Higher Education - October 15th, 2023
- Qkine Collaborates with the Cambridge Stem Cell Institute to Facilitate Same-Day Access to Key Research Products for Researchers at the Cambridge... - September 27th, 2023
- Stem cells: a comprehensive review of origins and emerging clinical ... - September 25th, 2023
- Stem Cell Research and Communicating Science | GBH - GBH News - September 20th, 2023
- Stem cell research reveals the earliest stages of a human life - SBS News - September 10th, 2023
- Stem Cell Therapy Market Size 2023 | Innovative Research Methodologies with Emerging Trends and Opportuni - Benzinga - September 10th, 2023
- Autologous Stem Cell and Non-Stem Cell Based Therapies Market Research, Current Trends, Key Industry Play - Benzinga - September 8th, 2023
- Stem Cell Therapy Market 2023 Business Statistics and Research ... - The Knox Student - August 28th, 2023
- Autologous Stem Cell Based Therapies Market Analysis, Research ... - Chatfield News-Record - July 19th, 2023
- Global Stem Cell Market Projected to Reach $14 Bn by 2028: Ken Research - Yahoo Finance - July 11th, 2023
- Theradaptive Awarded Manufacturing Assistance Grant by the Maryland Stem Cell Research Fund - Benzinga - July 10th, 2023
- Bionano Announces Presentation of OGM Utility Across Stem Cell Therapy Applications at the International Society for Stem Cell Research (ISSCR) Annual... - June 19th, 2023
- Sana Biotechnology Highlights Preclinical Data from Hypoimmune and Fusogen Platforms at the International Society for Stem Cell Research (ISSCR) 2023... - June 17th, 2023
- Induced Pluripotent Stem Cell (iPSC) Global Market Report 2023: Effective Research Programs Hold Key in Roll Out of Advanced iPSC Treatments - Yahoo... - June 17th, 2023
- Lung and heart stem cell research paves way for new COVID-19 treatments - Medical Xpress - June 14th, 2023
- Toxicology PhD student cultivating giant leaps in stem cell research ... - June 4th, 2023
- Harvard Stem Cell Institute (HSCI) - May 26th, 2023
- Findings may lead to improved insulin-secreting cells derived from stem ... - May 26th, 2023
- Cell Press: Stem Cell Reports - May 26th, 2023
- Stem cell research could enable blood to be made in other parts of the body - Medical Xpress - May 26th, 2023
- Construction of myocardial patch with mesenchymal stem cells and poly ... - May 22nd, 2023
- Cedars-Sinai to Send Stem Cells to the Space Station to Aid in the ... - May 22nd, 2023
- researchers expand human blood stem cells | Institute for Stem Cell ... - May 22nd, 2023
- A Look Inside Stem Cells Helps Create Personalized Regenerative ... - May 17th, 2023
- Exclusive Research Report on Msenchymal Stem Cell and Exosome Diagnostics and Therapies Market to Witness Comp - openPR - May 17th, 2023
- The Future of Stem Cell Research: Master of Science in ... - The Daily | Case Western Reserve University - May 10th, 2023
- Exclusive Research Report on Stem Cell Therapy for Diabetes and ... - Digital Journal - May 9th, 2023
- Aging melanocyte stem cells and gray hair | National Institutes of ... - May 5th, 2023
- Mouse hair turns gray when certain stem cells get stuck - May 5th, 2023
- Science-First Skincare Company Michal Morrison Secures Exclusive World-Wide License of Proprietary STEM6 Molecule, Supported by Over 25 Years of... - May 5th, 2023
- BioCentriq and panCELLa execute research agreement to study stem cell-derived Natural Killer cell expansi - Benzinga - May 3rd, 2023
- Hair turning gray? Study finds a stem cell 'glitch' may be the cause - May 1st, 2023
- Elevai Labs Announces Research Grant Award and Partnership to Better Characterize the 'Payload' of ELEVAI's Stem Cell-derived Exosomes - Yahoo Finance - April 27th, 2023
- Why does hair turn gray? A new study says 'stuck' stem cells may ... - NPR - April 27th, 2023
- Study advances understanding of how melanocyte stem cells work to color ... - April 21st, 2023
- Stem cell research and therapy legislation to be replaced, says ... - Bahamas Tribune - April 21st, 2023
- Stem Cell Research (journal) - Wikipedia - April 21st, 2023
- Scientists Are About to Try to Create Stem Cells in Space - April 21st, 2023
- Stem Cell Research & Therapy | Articles - BioMed Central - April 16th, 2023
- Stem Cell Junk Yards Reveal a New Clue About Aging | WIRED - April 16th, 2023
- Global Stem Cells Market Research Report 2023: Implications - April 16th, 2023
- Stem cell research can help people with hard- | EurekAlert! - April 16th, 2023
- University Of Edinburgh's stem cell research gets funding boost - India Education Diary - April 14th, 2023
Recent Comments