Like many states, the UK government has committed to supporting disruptive innovations.1 These are considered to hold greater potential for economic growth and development than incremental advances in established technologies. Within this broad strategy the bioeconomy, the area of industrial activity based on commercialising life sciences research is given a particular importance. The bioeconomy includes sectors like biofuels, agricultural biotechnology, and medical biotechnology.2 In the latter case, advances in medical biotechnologies hold promise for treating, and even curing, serious and chronic diseases as well as driving growth and prosperity. Regenerative medicine (RM), the biotechnology-based use of cells, tissues, and genes as medicinal products, is certainly disruptive in that they differ in important ways from traditional pharmaceuticals and medical devices.3
The UK has taken a number of policy measures to support the development of the RM industry. The Regenerative Medicine Platform funding schemes promote and co-ordinate academic translational research. The Catapult centres, including the Cell and Gene Therapy Catapult, the Medicines Discovery Catapult and the High Value Manufacturing Catapult, provide advice, facilities and infrastructure to support businesses, especially Small and Medium-sized Enterprises (SMEs); with potential to contribute to the RM value chain. The Medicines and Healthcare products Regulatory Agency (MHRA) Innovation Office offers a RM advice service to help academic and commercial developers navigate the complex regulatory framework for biological therapies, while the recent Accelerated Access Review proposed a raft of measures to speed up the regulatory timeline for transformative new therapies more generally.4
However, it does not necessarily follow that all parts of the biomedical sector will be equally disrupted by any given RM technology, nor that all RM technologies will be disruptive in exactly the same way.5 The ESRC-funded Biomodifying Technologies project6 analysed three case studies of biotechnologies with disruptive potential: gene-editing which allows faster, more accurate genetic modification, induced pluripotent stem cell (iPSC) technology that allows an ordinary skin or blood cell to be turned into a stem cell capable of producing any tissue type in the human body, and 3D bioprinting which can produce three-dimensional structures made from living tissues.
Gene editing and iPSC are advances on earlier generations of genetic engineering and stem cell technologies. They align reasonably well with the existing skill sets, goals, equipment, and techniques of researchers working in both academic and commercial settings. They are not especially disruptive at the level of basic research. Bioprinting requires skills, tools and techniques from engineering, materials chemistry, computer-aided design, biology, and medicine. This has necessitated greater disruption in the form of organisational change, to create new research groups and foster collaborative learning across disciplines.
For all three technologies, there are also well-established pathways to extract near-term value from basic research: peer-reviewed publications, patent applications, and the market for reagents, tools, and equipment. Each case demonstrates clear growth in the number of papers, patents, and reagent/equipment sales, although the rate of acceleration is greatest for CRISPR-based gene editing and slowest for bioprinting.
The pathways to realise longer-term, clinical, and economic value are less well established for RM. The healthcare sector is seen as particularly resistant to disruptive innovations, due to the lengthy regulatory process and powerful incumbent firms, which have historically been wary of investing in RM.7 The process of scaling laboratory protocols for cell or gene-based therapies into industrial procedures, taking products through clinical trials to establish safety and efficacy, and securing reimbursement, is every bit as experimental and involves as much learning by trial and error as exploratory laboratory research, but with much higher financial stakes. Interest from incumbents appears to be growing, as recent years have seen an increase in the number of cell or gene-based therapies reaching the market. However, there is no off the shelf manufacturing solution, as different RM products have different attributes: in the industry there is a popular idiom the product is the process. This means that the acceleration seen at the basic R&D stage does not unproblematically translate into speedy translation further down the pathway.
Rather, initial clinical applications of gene editing, iPSC and bioprinting are targeted at a more limited range of niche applications. The niches for each technology are shaped by a number of critical factors. Smaller tissues, such as the eye require fewer replacement cells or lower titres of gene editing vector, which are more manageable with current manufacturing capacity. The challenges of manufacturing at scale, combined with high anticipated costs, combine to make narrowly defined subsets of disease categories, with high unmet need, a preferred route for commercial development, especially where there is potential for a disruptive new product to demonstrate significant Quality of Life gains over the current standard of care.
Indications that draw on procedures, standards and requirements established for previous therapies are seen as less risky and thus promising clinical targets. Gene editing to treat thalassemia and other blood disorders builds on decades of clinical expertise with the bodys haematopoietic (blood-forming) system, gained by treating leukaemia patients. Even treatments that were not ultimately successful such as foetal stem cell transplants for Parkinsons disease (PD) can provide expertise with clinical trials and regulation to support a next-generation iPSC-based cell therapy for PD.
While the government has rightly been wary of picking winners, as particular niches for early clinical adoption of biomodifying technologies become apparent they may require specific, targeted support, to complement the broader support for the field already provided by polices described above. Innovations in related fields such as biomaterials and automation, potentially supported by the High Value Manufacturing Catapult, are likely to improve manufacturing capacity and speed over time. These innovations may be relatively incremental in the manufacturing phase but could have disruptive effects further down the value chain at the clinical delivery phase, as greater supply makes biomodifying RM therapies accessible to less tightly defined patient cohorts. The next policy challenge will be to provide targeted support for clinical delivery whilst avoiding lock-in to infrastructure or procedures that would inhibit the evolution of the field over time.
The research underpinning this piece was supported by the Economic and Social Research Council grant number ES/P002943/1 and the Leverhulme Trust grant number RPG-2017-330
References
1 Department for Business, Industry and Industrial strategy (2017) Industrial Strategy: building a Britain fit for the future. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/730048/industrial-strategy-white-paper-web-ready-a4-version.pdf
2 Department for Business, Industry and Industrial strategy (2018) Bioeconomy strategy: 2018 to 2030. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/761856/181205_BEIS_Growing_the_Bioeconomy__Web_SP_.pdf
3 Open Access Government (2019) The promises and challenges of biomodifying technologies for the UK https://www.openaccessgovernment.org/biomodifying-technologies/68041/
4 Accelerated Access Review (AAR). (2016). Final Report: Review of Innovative Medicines and Medical Technologies. London: The Crown.
5 Joyce Tait & David Wield (2019) Policy support for disruptive innovation in the life sciences, Technology Analysis & Strategic Management, DOI: 10.1080/09537325.2019.1631449
6 Open Access Government (2019) The promises and challenges of biomodifying technologies for the UK https://www.openaccessgovernment.org/biomodifying-technologies/68041/
7 Joyce Tait & David Wield (2019) Policy support for disruptive innovation in the life sciences, Technology Analysis & Strategic Management, DOI: 10.1080/09537325.2019.1631449
Please note: This is a commercial profile
Editor's Recommended Articles
Here is the original post:
Targeted policy support for emerging biomedical innovations - Open Access Government
- Stem Cell Therapy Market Types, Applications, Share, Growth - openPR - February 6th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 6th, 2025
- Revitalizing Health with Stem Cell Therapy: A Groundbreaking Path To Longevity and Wellness - openPR - February 4th, 2025
- Gene therapy offers new hope for sickle cell disease patients - Open Access Government - February 4th, 2025
- Scientists trial implant to patch up the heart - BBC.com - February 2nd, 2025
- Cell Therapy Market Size is Projected to Reach USD 33.93 - GlobeNewswire - January 28th, 2025
- Meet the California Institute Pushing Stem Cell & Gene Therapy Research: Part 3 - The Medicine Maker - January 28th, 2025
- Immusoft to Present Positive Data from the First Engineered B Cell in a Human Clinical Trial at the 21st Annual WorldSymposium 2025 - The Eastern... - January 28th, 2025
- Beyond the Lab: Stem cell research - Drug Target Review - January 25th, 2025
- Asia Pacific Stem Cell Therapy Market to Reach US$ 4,075.75 Million by 2033 with a Robust CAGR of 10.29% - openPR - January 25th, 2025
- Exciting data: S.Biomedics preps US IND of PD cell therapy - BioWorld Online - January 25th, 2025
- $24.85 Billion Cell Therapy Market Forecast by 2032 (CAGR 20.4%) - openPR - January 25th, 2025
- Stem Cell Therapy Market Expected to Expand at a Steady 2025-2032 - openPR - January 25th, 2025
- Regenerative Medicine Market to receive overwhelming hike US$ 164.9 billion in Revenues by 2032, Growing at a CAGR of 23.30% From 2024 to 2032 -... - January 25th, 2025
- Alternative medicine fans see RFK Jr. as a hero. The fields skeptics worry. - The Washington Post - January 23rd, 2025
- U.S. PRP and Stem Cell Alopecia Treatment Market Analysis 2025-2030 by Treatment, Indication, and End-use - Androgenic Alopecia Dominated the Market... - January 23rd, 2025
- The Future of Regenerative Medicine Lies in the Hands of Chiropractors - Dynamic Chiropractic - January 23rd, 2025
- Stem Cell Therapy Industry Dynamics and Contributions by RTI - openPR - January 21st, 2025
- Stem Cells Market to Reach USD 44.27 Billion by 2033, Driven by Expanding Applications and Innovations - openPR - January 21st, 2025
- Organoids at the Forefront Innovations in Stem Cell Research and Precision Medicine - openPR - January 21st, 2025
- The promising future of regenerative medicine - Yahoo Finance - January 17th, 2025
- An earful of gill: USC Stem Cell study points to the evolutionary origin of the mammalian outer ear - EurekAlert - January 11th, 2025
- Aspen Partners with Mytos to Automate Stem Cell Production for Parkinsons Therapy - Genetic Engineering & Biotechnology News - January 9th, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 9th, 2025
- Meet CIRM: the California Institute Pushing Stem Cell and Gene Therapy Research: Part 1 - The Medicine Maker - January 7th, 2025
- Regenerative Medicine Market to Experience Significant Growth, Projected to Reach $183.08 Billion by 2031. - openPR - January 7th, 2025
- Stem-cell therapies that work: 10 Breakthrough Technologies 2025 - MIT Technology Review - January 5th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 3rd, 2025
- Stem Health Plus Revolutionizes Skin Regeneration with Advanced Stem Cell Skin Graft Technology - The Manila Times - January 1st, 2025
- Allogeneic Stem Cell Transplantation Market Size to Expand Lucratively by 2031 - openPR - January 1st, 2025
- Apoptotic clearance by stem cells: molecular mechanisms for recognition and phagocytosis of dead cells - Nature.com - December 30th, 2024
- Why Medical Tourists are Choosing Mexico: The Affordable Alternative for Advanced Stem Cell Treatments - openPR - December 30th, 2024
- Induced Pluripotent Stem Cells (iPSC) Production Market: Trends, Growth, and the Role of AI - openPR - December 30th, 2024
- Stem cells 'instructed' to form specific tissues and organs - New Atlas - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Galveston County Daily News - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Voice Of Alexandria - December 28th, 2024
- U.S. Stem Cell Therapy Market Revenue to Attain USD 17.70 Bn by 2033 - Precedence Research - December 27th, 2024
- Here are some biggest medical breakthroughs of 2024 - Medical Buyer - December 27th, 2024
- Researchers from Korea University explore how ascorbic acid and FGF4 revolutionize regenerative medicine - EurekAlert - December 27th, 2024
- Regenerative Medicine Market to Skyrocket to USD 73,084.2 Million by 2033 at a 18.5% of CAGR - openPR - December 27th, 2024
- Stem cell therapy to correct heart failure in children could 'transform lives' - Fox News - December 25th, 2024
- Advancing type 1 diabetes therapy: autologous islet transplant breakthrough - Nature.com - December 25th, 2024
- Stem Cell Therapy Market to Triple in Value, Reaching USD 52.1 Billion by 2034 at a 12.1% of CAGR - openPR - December 25th, 2024
- Stem-cell therapies: A breakthrough in treating parkinson's, cancer, diabetes, and more - The Business Standard - December 25th, 2024
- Replay 2024 : 6 Biggest Medical Breakthroughs Of 2024 - NewsX - December 25th, 2024
- Tumbling stem cells? Watch how movement plays a part in their fate - Scope - December 20th, 2024
- SCD patients free of VOEs after treatment with gene-editing therapy - Sickle Cell Disease News - December 20th, 2024
- Japan's Sumitomo to establish regenerative medicine and cell therapy joint venture - BSA bureau - December 20th, 2024
- Brain cells remain healthy after a month on the International Space Station, but mature faster than brain cells on Earth - EurekAlert - December 19th, 2024
- Reindeers Pave the Way for Regenerative Medicine - The Scientist - December 19th, 2024
- Johnson & Johnson submits application to the European Medicines Agency seeking approval of a new indication for IMBRUVICA (ibrutinib) in adult... - December 19th, 2024
- What Role Does Regenerative Medicine Play In The Management Of Type 1 And Type 2 Diabetes? - TheHealthSite - December 19th, 2024
- World's 1st Stem Cell Book on Animals, Reveals How to Extend the Lives of Pets - PR Newswire - December 17th, 2024
- Accelerated Biosciences and Stemmatters Collaborate to Offer iPSC Derived from Human Trophoblast Stem Cells - Business Wire - December 17th, 2024
- Stem Cells: Hope on the Horizon for Preterm Babies - Monash University - December 17th, 2024
- Stem Cell Transplant Offers No Difference in OS or PFS in Mantle Cell Lymphoma Compared with Maintenance Therapy Alone - OncoZine - December 17th, 2024
- Inside One Mans Journey with Multiple Myeloma - Men's Health - December 15th, 2024
- Stem Cells Market Size to Reach USD 48.83 Billion By 2034 - Exclusive Report by Precedence Research - BioSpace - December 13th, 2024
- Treating Heart Defects with Tissue-engineered Vascular Conduits - Yale School of Medicine - December 13th, 2024
- Tom Curry: England flanker has stem-cell therapy in bid to make 2027 World Cup - BBC.com - December 13th, 2024
- Stem Cell Manufacturing Market Dynamics Key Drivers Challenges and Technological Innovations - Set to reach USD 26.6 billion by 2033 - PharmiWeb.com - December 13th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of USD 54.7 Bn By 2033, At 12.6% CAGR: Dimension Market Research - The Manila Times - December 13th, 2024
- Stem cell transplantation could save the coral reefs - Ynetnews - December 13th, 2024
- Vitrification Market | Driving Innovations in Cryopreservation for Fertility Treatments and Regenerative - EIN News - December 13th, 2024
- Workshop on Regenerative Medicine concludes at SKUAST-K - Greater Kashmir - December 13th, 2024
- High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma - News-Medical.Net - December 11th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of - GlobeNewswire - December 11th, 2024
- Stem Cell Therapy Market to Worth Over US$ 2,612.92 Million By 2033 | Astute Analytica - GlobeNewswire - December 11th, 2024
- Changes in Blood Cell Production Over the Lifetime | Newswise - Newswise - December 7th, 2024
- Study reveals how stem cells respond to environmental signals, with implications for IBD and colorectal cancer - Medical Xpress - December 5th, 2024
- Stem cell therapy TED-A9 showing safety and early efficacy in trial - Parkinson's News Today - December 5th, 2024
- BMP-2 loaded scaffold for stem and immune cell recruitment in therapeutic applications - News-Medical.Net - December 5th, 2024
- Stem Cell Treatment May Help To Cure Vision Loss - Anti Aging News - December 5th, 2024
- BrainStorm Cell Therapeutics to Host KOL Webinar on Current Developments in the Treatment of Amyotrophic Lateral Sclerosis (ALS) on December 11, 2024... - December 3rd, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 3rd, 2024
- Enhancing the efficacy of cell transplantation therapy for stroke or traumatic brain injury - Medical Xpress - December 1st, 2024
- Apheresis in Cellular Therapies: Unlocking Quality for CAR T and Stem Cell Treatments, Upcoming Webinar Hosted by Xtalks - PR Web - November 29th, 2024
- Stem Cell Therapy Market is expected to Double Its Size by Upcoming Decade - openPR - November 29th, 2024
Recent Comments