Cancer's knack for developing resistance to chemotherapy has long been a major obstacle to achieving lasting remissions or cures. While tumors may shrink soon after chemotherapy, many times they eventually grow back.
Scientists once thought that unique genetic mutations in tumors underlay this drug resistance. But more and more, they are casting their eyes on other, nongenetic changes in cancer cells to explain their adaptability.
For example, one way that cancer cells can develop resistance is by changing their identity. A prostate cancer cell that is sensitive to hormone-blocking therapy might morph into a cell type that does not require the hormone for its growth.
Rather than specific mutations driving them, identity changes like these come about through changes in gene expression -- cells turning specific genes on or off. As a result of these changes, a single tumor can become very different in its cellular makeup. This heterogeneity creates challenges for treatment since a single drug is unlikely to work against so many different cell types.
A new study from a team of researchers at the Sloan Kettering Institute, the Koch Institute for Integrative Cancer Research at MIT, and the Klarman Cell Observatory at the Broad Institute finds that this tumor heterogeneity can be traced to a common source: a particularly flexible cell state that is characteristic of a subset of cells in a tumor and can generate many other diverse cell types.
"The high-plasticity cell state is the starting point for much of the heterogeneity we see in tumors," says Tuomas Tammela, an Assistant Member in the Cancer Biology and Genetics Program at SKI and the corresponding author on the new paper, published July 23 in the journal Cancer Cell. "It's kind of like a busy intersection of many roads: Wherever a cell wants to end up identity-wise, it has to go through this cell state."
Because this cell state produces nearly all the cellular heterogeneity that emerges in tumors, it is an attractive target for potential therapies.
The particular tumors the researchers examined were lung cancer tumors growing in mice. Jason Chan, a physician-scientist doing a fellowship in the Tammela lab and one of the paper's lead authors, says finding this unusual cell state was a surprise.
This highly plastic cell state is something completely new. When we saw it, we didn't know what it was because it was so different. It didn't look like normal lung cells where the cancer came from, and it didn't really look like lung cancer either. It had features of embryonic germ layer stem cells, cartilage stem cells, and even kidney cells, all mixed together."
Jason Chan, Study Lead Author and Physician-Scientist, Memorial Sloan Kettering Cancer Center
Nevertheless, he and his colleagues found these cells in every tumor they examined, which suggested that the cells were doing something biologically very important.
The researchers identified these highly plastic cells by employing a relatively new laboratory technique called single cell RNA sequencing (scRNA-Seq). This technique allows researchers to take "snapshots" of individual cells' gene expression profiles -- revealing which genes are on or off.
By performing scRNA-Seq on tumors as they grew over time, they were able to watch when and how different cell types emerged over the course of a tumor's evolution. From these data, the researchers were able to create a kind of map of which cells came from which other cells.
"The map contains major highways and little dirt roads," Dr. Tammela says. "The high-plasticity cell state that we identified sits right in the middle of the map. It has a lot of paths coming in, and it has even more paths coming out."
This high-plasticity cell state emerged consistently in a tumor's evolution and persisted throughout its growth. In fact, Dr. Tammela says, "it was the only cell state that we found to be present in every single tumor."
Plasticity -- the ability of a cell to give rise to other cells that take on different identities -- is a well-known feature of stem cells. Stem cells play important roles in embryonic development and in tissue repair. Many scientists think that cancers arise from specific cancer stem cells.
But Dr. Tammela and colleagues do not think these high-plasticity cells are stem cells.
"When we compare the gene expression signature of these highly plastic cells to normal stems cells or known cancer stem cells, the signatures don't match at all. They look completely different," he says.
And unlike stem cells, they're not there at the very beginning of a tumor's growth. They only emerge later.
Many prior studies have looked for possible "resistance mutations" -- genetic changes that account for a tumor's ability to resist the effects of cancer drugs. While some have been found, more often the basis of resistance remains mysterious. The new findings offer a potential solution to the mystery.
"Our model could explain why certain cancer cells are resistant to therapy and don't have a genetic basis for that resistance that we can identify," Dr. Chan says.
Importantly, it's not all the cells in the tumor that are adapting, he explains. It's a subset of the cancer cells that are just more plastic, more malleable.
By combining chemotherapy drugs with new medications that target these highly plastic cells, the researchers think it might be possible to avert the emergence of resistance and provide longer-lasting remissions.
Here is the original post:
New model may explain why certain cancer cells are resistant to therapy - News-Medical.Net
- Tracking Tissue Development to Inspire Regenerative Therapies - the-scientist.com - April 8th, 2025
- RheeGen's Topical Stem Cell Therapy Pioneers Future of Regenerative Medicine - ACCESS Newswire - April 8th, 2025
- Bone marrow drive aims to save lives of local, worldwide cancer patients - MU The Parthenon - April 8th, 2025
- First of its kind stem cell transplant treatment in Boston restores vision to patient - WCVB - April 8th, 2025
- This Protein Protects Hair Follicle Stem Cells from Stress and Supports Hair Regrowth, Study Finds - Yahoo - April 8th, 2025
- Worlds first human trial of sperm stem cell therapy aims to reverse male infertility - Interesting Engineering - April 8th, 2025
- Man gets sperm-making stem cell transplant in first-of-its-kind procedure - MSN - April 8th, 2025
- Vaping and Pregnancy: Science, Misinformation, and the Quest for Truth - vapingpost.com - April 6th, 2025
- Cell and Gene Therapy Market: The Groundbreaking Treatments - openPR.com - April 6th, 2025
- Japanese researchers' breakthrough stem cell treatment helps paralyzed man stand again - Times of India - April 4th, 2025
- Stem cell barcoding reveals how the brain and inner ear are formed - Phys.org - April 4th, 2025
- A new kind of stem cell is revolutionizing regenerative medicine - American Society for Biochemistry and Molecular Biology - April 4th, 2025
- 'Morning pee has stem cells': Wellness influencer's bizarre urine therapy routine goes viral, watch video - Times of India - April 4th, 2025
- Lactylation-driven USP4-mediated ANXA2 stabilization and activation promotes maintenance and radioresistance of glioblastoma stem cells - Nature - April 4th, 2025
- Stem Cell Discovery in Human Retina May Lead to Retinal Degeneration Treatments - the-scientist.com - April 4th, 2025
- Unravelling the impact of the chromobox proteins in human cancers - Nature - April 4th, 2025
- Japans pioneering stem cell treatment enables paralyzed man to stand again - Times of India - April 4th, 2025
- Severe inflammation and lineage skewing are associated with poor engraftment of engineered hematopoietic stem cells in patients with sickle cell... - April 4th, 2025
- Human neuron chimeric mice reveal impairment of DVL-1-mediated neuronal migration by sevoflurane and potential treatment by rTMS - Nature - April 4th, 2025
- Glucose revealed as a master regulator of tissue regeneration in Stanford Medicine study - Stanford Medicine - April 1st, 2025
- Boys With Cancer Can Face Infertility as Adults. Can Storing Their Stem Cells Help? - MedPage Today - April 1st, 2025
- Paralyzed Man Standing, Learning to Walk Again After Injection of Hacked Stem Cells - Yahoo - April 1st, 2025
- Boys with cancer can face infertility as adults. Can storing their stem cells help? - The Independent - April 1st, 2025
- Designing the future of cultivated meat with cost-effective stem cell media and RNA delivery - News-Medical - April 1st, 2025
- Stem cell therapy for IPF shows promise to boost lung function - Pulmonary Fibrosis News - March 30th, 2025
- Elusive stem cells discovered in human retina may lead to treatment for blindness - Science - March 30th, 2025
- Paralysed man can stand again with breakthrough stem cell therapy in Japan - India Today - March 30th, 2025
- Treating spinal cord injuries with stem cells - Labiotech.eu - March 30th, 2025
- Boys with cancer can face infertility as adults. Can storing their stem cells help? - El Paso Inc. - March 30th, 2025
- Boys with cancer can face infertility as adults. Can storing their stem cells help? - The Associated Press - March 30th, 2025
- Dr. Mike Chan: Leading the Future of Organ-Specific Stem Cell Therapies with Revolutionary Treatments in Regenerative Medicine - PR.com - March 30th, 2025
- Boys with cancer can face infertility as adults. Can storing their stem cells help? - Hamilton Spectator - March 30th, 2025
- NASA awards National Stem Cell Foundation $3.1 million to continue studying the effects of microgravity on brain cells - SatNews - March 28th, 2025
- Glucose's double life: Study reveals its surprising role as a master regulator of tissue regeneration - Phys.org - March 28th, 2025
- In-silico analysis unveiling the role of cancer stem cells in immunotherapy resistance of immune checkpoint-high pancreatic adenocarcinoma -... - March 28th, 2025
- Opinion | Should There Be Limits to Research on Human Embryos? - The New York Times - March 28th, 2025
- 7-year-old Camp Hill boy with severe health issues proves nothing is impossible | Health Smart - WPMT FOX 43 - March 28th, 2025
- Mesenchymal stem cells-derived small extracellular vesicles and apoptotic extracellular vesicles for wound healing and skin regeneration: a systematic... - March 28th, 2025
- Stem cell therapy shows promise in treating spinal cord injuries - pna.gov.ph - March 24th, 2025
- Stem cell-based CALEC therapy achieves 90% corneal surface restoration in clinical trial - Ophthalmology Times - March 21st, 2025
- Newport: Baby with rare life-threating disorder finds donor - BBC.com - March 21st, 2025
- Shaping the future of diabetes treatment with 3D biorinting technology - EurekAlert - March 21st, 2025
- Localized ultrasonic stimulation using a piezoelectric micromachined ultrasound transducer array for selective neural differentiation of magnetic... - March 21st, 2025
- One quarter of bit.bios staff axed as stem cell company drops therapeutics division - Cambridge Independent - March 21st, 2025
- Life Recharged: A Transformative Journey with Stem Cell Therapy and Regenerative Medicine - openPR - March 21st, 2025
- Anti-aging technology that slows down human aging is the biggest challenge in the field of advanced - - March 21st, 2025
- Dame Sandra Biskind And Stem Cell Rejuvenation - Anti Aging News - March 21st, 2025
- Orca Bio Announces Positive Results from the Pivotal Phase 3 Study of Investigational Orca-T Compared to Allogeneic Stem Cell Transplant for the... - March 19th, 2025
- How are Embryonic Stem Cells Obtained? - BioXcellerator - March 19th, 2025
- CAR-T Cell Therapy Market reached US$ 4.8 billion in 2024 and - openPR - March 19th, 2025
- Skin cells can now be directly converted into neurons - Earth.com - March 19th, 2025
- A Lifesaving Connection Through Stem Cell Donation - University of Utah Health Care - March 17th, 2025
- Mesenchymal Stem Cells Market Projected to Reach USD 11.26 Billion by 2034, Growing at a CAGR of 12.9% - WhaTech - March 17th, 2025
- Drosophila ovarian stem cell niche ageing involves coordinated changes in transcription and alternative splicing - Nature.com - March 17th, 2025
- Embryonic Stem Cells - Definitions, Uses, and Limitations - BioInformant - March 16th, 2025
- Breakthrough: Surgeons Restore Sight to Certain Blind Patients Using Their Own Stem Cells - CBN.com - March 16th, 2025
- MIT engineers turn skin cells directly into neurons for cell therapy - MIT News - March 16th, 2025
- HO-1 overexpression inhibited WNT/-catenin signaling pathway. A)... - ResearchGate - March 16th, 2025
- Engineers turn skin cells directly into neurons for cell therapy - Phys.org - March 14th, 2025
- Specialized blood vessels and nitric oxide found to be key to stem cell survival and immune evasion - Medical Xpress - March 14th, 2025
- Diversity of ER-positive and HER2-negative breast cancer stem cells attained using selective culture techniques - Nature.com - March 14th, 2025
- Stem Cells and Stroke: An Interview with Neuroscientist Dr. Dileep Yavagal - University of Miami - March 14th, 2025
- Grad student draws on U of T Black health program to boost diversity of stem cell donors - University of Toronto - March 14th, 2025
- Stem Cell Therapy Market to Reach USD 60.72 Billion by 2034, Growing at a CAGR of 14.90% - openPR - March 14th, 2025
- Sun, Sand, and Experimental Stem Cell Therapy in Honduras? Sure, But Not Without Risk. - Men's Health - March 11th, 2025
- Stem Cell Therapy CALEC Restores Corneal Damage in Trial Led by Massachusetts Eye and Ear Investigators - CGTLive - March 11th, 2025
- TET2 deficiency increases the competitive advantage of hematopoietic stem and progenitor cells through upregulation of thrombopoietin receptor... - March 11th, 2025
- Adrenocortical stem cells in health and disease - Nature.com - March 11th, 2025
- Partick Thistle skipper Demi Falconer will miss a game to make stem cell donation - Daily Mail - March 11th, 2025
- Stem Cell and Exosome Innovations at Infinite Health Integrative Medicine Center Offers New Hope for Parkinson's Disease - Longview News-Journal - March 11th, 2025
- 'In that moment, that was everything to me': Patient describes joy of regaining vision in 1 eye after new stem cell therapy - Livescience.com - March 9th, 2025
- Award for Galway Scientist Using Jellyfish and Coral Relative To Study Stem Cell Biology - Afloat - March 9th, 2025
- Stem Cell Therapy Market - The Next Big Market Shift | Trends, Forecast & Company Share Insights 2025-2035 - openPR - March 9th, 2025
- Blind No More? Revolutionary Stem Cell Therapy Restores Vision With 92% Success - SciTechDaily - March 9th, 2025
- Clonal dynamics and somatic evolution of haematopoiesis in mouse - Nature.com - March 7th, 2025
- Mitochondria-enriched hematopoietic stem cells exhibit elevated self-renewal capabilities, thriving within the context of aged bone marrow -... - March 7th, 2025
- Engineered stem cells automatically deliver arthritis drugs at prescribed times of day - Medical Xpress - March 7th, 2025
- Doctors restore sight using new form of stem cell therapy - jacksonprogress-argus - March 7th, 2025
- Global Stem Cell Therapy Market to Reach USD 52.1 Billion by 2034, Growing at a 12.1% CAGR | FMI - openPR - March 7th, 2025
- Innovations in Stem Cell Therapy Market: Transforming - openPR - March 7th, 2025
Recent Comments