Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13:173855.

Article CAS PubMed Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:3157.

Article CAS PubMed Google Scholar

Beeravolu N, Brougham J, Khan I, McKee C, Perez-Cruet M, Chaudhry GR. Human umbilical cord derivatives regenerate intervertebral disc. J Tissue Eng Regen Med. 2018;12:e57991.

Article CAS PubMed Google Scholar

Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M et al. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J Vis Exp JoVE. 2017;55224.

Espinoza N, Peterson M. How to depolarise the ethical debate over human embryonic stem cell research (and other ethical debates too!). J Med Ethics. 2012;38:496500.

Article PubMed Google Scholar

Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem Cell-Based therapy. Int J Med Sci. 2018;15:3645.

Article CAS PubMed PubMed Central Google Scholar

Ma J, Wu J, Han L, Jiang X, Yan L, Hao J, et al. Comparative analysis of mesenchymal stem cells derived from amniotic membrane, umbilical cord, and chorionic plate under serum-free condition. Stem Cell Res Ther. 2019;10:19.

Article CAS PubMed PubMed Central Google Scholar

Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and Immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transpl. 2011;20:65567.

Article Google Scholar

Teoh PL, Mohd Akhir H, Abdul Ajak W, Hiew VV. Human mesenchymal stromal cells derived from perinatal tissues: sources, characteristics and isolation methods. Malays J Med Sci MJMS. 2023;30:5568.

Article PubMed Google Scholar

Hass R, Kasper C, Bhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal CCS. 2011;9:12.

Article CAS PubMed Google Scholar

Allard B, Cousineau I, Spring K, Stagg J. Chapter Fifteen - Measurement of CD73 enzymatic activity using luminescence-based and colorimetric assays. In: Galluzzi L, Rudqvist N-P, editors. Methods Enzymol [Internet]. Academic Press; 2019 [cited 2023 May 23]. pp. 26989. Available from: https://www.sciencedirect.com/science/article/pii/S0076687919304094

Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y. Primary structure of human placental 5-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem. 1990;191:5639.

Article CAS PubMed Google Scholar

Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev. 2017;276:12144.

Article CAS PubMed PubMed Central Google Scholar

Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, et al. CD73 expression on mesenchymal stem cells dictates the reparative properties via its Anti-Inflammatory activity. Stem Cells Int. 2019;2019:8717694.

Article PubMed PubMed Central Google Scholar

Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20:104554.

CAS Google Scholar

Yang J, Zhan X-Z, Malola J, Li Z-Y, Pawar JS, Zhang H-T, et al. The multiple roles of Thy-1 in cell differentiation and regeneration. Differ Res Biol Divers. 2020;113:3848.

CAS Google Scholar

Reif AE, Allen JMV, THE AKR THYMIC ANTIGEN, AND ITS DISTRIBUTION IN LEUKEMIAS AND NERVOUS TISSUES. J Exp Med. 1964;120:41333.

Sauzay C, Voutetakis K, Chatziioannou A, Chevet E, Avril T. CD90/Thy-1, a Cancer-Associated cell surface signaling molecule. Front Cell Dev Biol. 2019;7:66.

Article PubMed PubMed Central Google Scholar

Connor EV, Saygin C, Braley C, Wiechert AC, Karunanithi S, Crean-Tate K, et al. Thy-1 predicts poor prognosis and is associated with self-renewal in ovarian cancer. J Ovarian Res. 2019;12:112.

Article PubMed PubMed Central Google Scholar

Shaikh MV, Kala M, Nivsarkar M. CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomark Sect Dis Markers. 2016;16:3017.

Article CAS Google Scholar

Craig W, Kay R, Cutler R, Lansdrop P. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. 1993;177:133142.

Article CAS PubMed Google Scholar

Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1:63545.

Article CAS PubMed PubMed Central Google Scholar

Lin C-S, Xin Z-C, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol. 2013;28:110916.

CAS PubMed PubMed Central Google Scholar

Schoonderwoerd MJA, Goumans M-JTH, Hawinkels LJAC. Endoglin: beyond the endothelium. Biomolecules. 2020;10:289.

Article CAS PubMed PubMed Central Google Scholar

Gougos A, Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990;265:83614.

Article CAS PubMed Google Scholar

Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 2011;31:228390.

CAS PubMed Google Scholar

Lv X-J, Zhou G-D, Liu Y, Liu X, Chen J-N, Luo X-S, et al. In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med. 2012;30:82634.

Article CAS PubMed Google Scholar

Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ. 2012;19:53445.

Article CAS PubMed Google Scholar

wistowska M, Gil-Kulik P, Krzyanowski A, Bielecki T, Czop M, Kwaniewska A, et al. Potential effect of SOX2 on the cell cycle of Whartons jelly stem cells (WJSCs). Oxid Med Cell Longev. 2019;2019:5084689.

Article PubMed PubMed Central Google Scholar

Yoon DS, Kim YH, Jung HS, Paik S, Lee JW. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif. 2011;44:42840.

Article CAS PubMed PubMed Central Google Scholar

Gil-Kulik P, wistowska M, Krzyanowski A, Petniak A, Kwaniewska A, Pachno BJ, et al. Evaluation of the impact of Pregnancy-Associated factors on the quality of Whartons Jelly-Derived stem cells using SOX2 gene expression as a marker. Int J Mol Sci. 2022;23:7630.

Article CAS PubMed PubMed Central Google Scholar

Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6:30511.

Article PubMed PubMed Central Google Scholar

Go MJ, Takenaka C, Ohgushi H. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp Cell Res. 2008;314:114754.

Article CAS PubMed Google Scholar

Das BC, Tyagi A. Chapter 23 - Stem cells: A trek from laboratory to clinic to industry. In: Verma AS, Singh A, editors. Anim Biotechnol. San Diego: Academic; 2014. pp. 42550.

Chapter Google Scholar

Gawlik-Rzemieniewska N, Bednarek I. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther. 2016;17:110.

Article CAS PubMed Google Scholar

Mullin NP, Yates A, Rowe AJ, Nijmeijer B, Colby D, Barlow PN, et al. The pluripotency rheostat Nanog functions as a dimer. Biochem J. 2008;411:22731.

Article CAS PubMed Google Scholar

Wang J, Levasseur DN, Orkin SH. Requirement of Nanog dimerization for stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A. 2008;105:632631.

Article CAS PubMed PubMed Central Google Scholar

Zhang W, Sui Y, Ni J, Yang T. Insights into the Nanog gene: A propeller for stemness in primitive stem cells. Int J Biol Sci. 2016;12:137281.

Article CAS PubMed PubMed Central Google Scholar

Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:64355.

Article CAS PubMed Google Scholar

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The Homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:63142.

Article CAS PubMed Google Scholar

Balzano F, Bellu E, Basoli V, Dei Giudici S, Santaniello S, Cruciani S, et al. Lessons from human umbilical cord: gender differences in stem cells from Whartons jelly. Eur J Obstet Gynecol Reprod Biol. 2019;234:1438.

Article CAS PubMed Google Scholar

Pirjali T, Azarpira N, Ayatollahi M, Aghdaie MH, Geramizadeh B, Talai T. Isolation and characterization of human mesenchymal stem cells derived from human umbilical cord Whartons jelly and amniotic membrane. Int J Organ Transpl Med. 2013;4:1116.

CAS Google Scholar

Song Y, Lim J-Y, Lim T, Im K-I, Kim N, Nam Y-S, et al. Human mesenchymal stem cells derived from umbilical cord and bone marrow exert Immunomodulatory effects in different mechanisms. World J Stem Cells. 2020;12:103249.

Article PubMed PubMed Central Google Scholar

Han S, Zhao Y, Xiao Z, Han J, Chen B, Chen L, et al. The three-dimensional collagen scaffold improves the stemness of rat bone marrow mesenchymal stem cells. J Genet Genomics Yi Chuan Xue Bao. 2012;39:63341.

Article CAS PubMed Google Scholar

Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev Rep. 2009;5:37886.

Article CAS PubMed Google Scholar

Tsai C-C, Su P-F, Huang Y-F, Yew T-L, Hung S-C. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell. 2012;47:16982.

Article CAS PubMed Google Scholar

Liu TM, Wu YN, Guo XM, Hui JHP, Lee EH, Lim B. Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev. 2009;18:101322.

Article CAS PubMed Google Scholar

Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells Dayt Ohio. 2007;25:314354.

Article CAS Google Scholar

Seo K-W, Lee S-R, Bhandari DR, Roh K-H, Park S-B, So A-Y, et al. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs). Biochem Biophys Res Commun. 2009;384:1205.

Article CAS PubMed Google Scholar

Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA. Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation. J Tissue Eng. 2015;6:2041731415592356.

Article PubMed PubMed Central Google Scholar

Ode A, Kopf J, Kurtz A, Schmidt-Bleek K, Schrade P, Kolar P, et al. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur Cell Mater. 2011;22:2642.

Article CAS PubMed Google Scholar

Togarrati PP, Dinglasan N, Desai S, Ryan WR, Muench MO. CD29 is highly expressed on epithelial, myoepithelial, and mesenchymal stromal cells of human salivary glands. Oral Dis. 2018;24:56172.

Visit link:

Mesenchymal stromal/stem cells from perinatal sources: biological facts ...

Related Post

Leave a comment

Your email address will not be published. Required fields are marked *


Refresh