Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, et al. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng. 2018;2(6):36276.
Article CAS PubMed PubMed Central Google Scholar
Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):38190.
CAS PubMed Google Scholar
Diehl R, Ferrara F, Mller C, Dreyer AY, McLeod DD, Fricke S, et al. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol. 2017;14(2):14679.
Article CAS PubMed Google Scholar
Martin I, Galipeau J, Kessler C, Le Blanc K, Dazzi F. Challenges for mesenchymal stromal cell therapies. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat2189.
Article PubMed PubMed Central Google Scholar
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):23047.
Article CAS PubMed Google Scholar
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):23542.
Article CAS PubMed Google Scholar
Heidari B, Shirazi A, Akhondi MM, Hassanpour H, Behzadi B, Naderi MM, et al. Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue. Avicenna J Med Biotechnol. 2013;5(2):10417.
PubMed PubMed Central Google Scholar
Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):64958.
Article CAS PubMed Google Scholar
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):1362530.
Article CAS PubMed PubMed Central Google Scholar
Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):290311.
Article CAS PubMed Google Scholar
in `t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):15489.
Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001;264(1):5162.
Article CAS PubMed Google Scholar
Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int. 2014;38(4):40511.
Article CAS PubMed Google Scholar
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16(4):55764.
CAS PubMed Google Scholar
Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):30913.
Article CAS PubMed Google Scholar
Gotts JE, Matthay MA. Mesenchymal stem cells and acute lung injury. Crit Care Clin. 2011;27(3):71933.
Article CAS PubMed PubMed Central Google Scholar
Yuan SF, Jiang T, Sun LH, Zheng RJ, Cao GQ, Ahat NZ, et al. Use of bone mesenchymal stem cells to treat rats with acute liver failure. Genet Mol Res. 2014;13(3):696280.
Article CAS PubMed Google Scholar
Qian H, Yang H, Xu W, Yan Y, Chen Q, Zhu W, et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int J Mol Med. 2008;22(3):32532.
PubMed Google Scholar
Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006;81(10):13907.
Article PubMed Google Scholar
Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):143941.
Article PubMed Google Scholar
Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):157986.
Article PubMed CAS Google Scholar
Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J. 2009;30(22):272232.
Article PubMed PubMed Central Google Scholar
Cai M, Shen R, Song L, Lu M, Wang J, Zhao S, et al. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects. Sci Rep. 2016;6:28250.
Article CAS PubMed PubMed Central Google Scholar
Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100(19 Suppl):Ii24756.
CAS PubMed Google Scholar
Pei Z, Zeng J, Song Y, Gao Y, Wu R, Chen Y, et al. In vivo imaging to monitor differentiation and therapeutic effects of transplanted mesenchymal stem cells in myocardial infarction. Sci Rep. 2017;7(1):6296.
Article PubMed PubMed Central CAS Google Scholar
Gholamrezanezhad A, Mirpour S, Bagheri M, Mohamadnejad M, Alimoghaddam K, Abdolahzadeh L, et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol. 2011;38(7):9617.
Article CAS PubMed Google Scholar
Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells. 2008;26(1):24453.
Article CAS PubMed Google Scholar
Li Y, Liu J, Liao G, Zhang J, Chen Y, Li L, et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int J Mol Med. 2018;41(5):262939.
CAS PubMed PubMed Central Google Scholar
Sykova E, Jendelova P. In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res. 2007;161:36783.
Article CAS PubMed Google Scholar
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20(11):2698.
Article CAS PubMed Central Google Scholar
Cyranoski D. Japans approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature. 2019;565(7741):5445.
Article CAS PubMed Google Scholar
Delling U, Brehm W, Metzger M, Ludewig E, Winter K, Julke H. In vivo tracking and fate of intra-articularly injected superparamagnetic iron oxide particle-labeled multipotent stromal cells in an ovine model of osteoarthritis. Cell Transplant. 2015;24(11):237990.
Article PubMed Google Scholar
Pak J, Lee JH, Pak N, Pak Y, Park KS, Jeon JH, et al. Cartilage regeneration in humans with adipose tissue-derived stem cells and adipose stromal vascular fraction cells: updated status. Int J Mol Sci. 2018;19(7):2146.
Article PubMed Central CAS Google Scholar
Nam Y, Rim YA, Lee J, Ju JH. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int. 2018;2018:8490489.
Article PubMed PubMed Central CAS Google Scholar
Wang CZ, Eswaramoorthy R, Lin TH, Chen CH, Fu YC, Wang CK, et al. Enhancement of chondrogenesis of adipose-derived stem cells in HA-PNIPAAm-CL hydrogel for cartilage regeneration in rabbits. Sci Rep. 2018;8(1):10526.
Article PubMed PubMed Central CAS Google Scholar
Satue M, Schuler C, Ginner N, Erben RG. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep. 2019;9(1):10153.
Article PubMed PubMed Central CAS Google Scholar
Qi Y, Yang Z, Ding Q, Zhao T, Huang Z, Feng G. Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect. Exp Ther Med. 2016;11(2):45866.
Article CAS PubMed Google Scholar
Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G, et al. COVID-19: towards controlling of a pandemic. Lancet. 2020;395(10229):10158.
Article CAS PubMed PubMed Central Google Scholar
Thompson M, Mei SHJ, Wolfe D, Champagne J, Fergusson D, Stewart DJ, et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinMed. 2020. https://doi.org/10.1016/j.eclinm.2019.100249.
Article Google Scholar
Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):25964.
Article CAS PubMed Google Scholar
Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev. 2013;22(23):311427.
Article CAS PubMed Google Scholar
Kouris NA, Schaefer JA, Hatta M, Freeman BT, Kamp TJ, Kawaoka Y, et al. Directed fusion of mesenchymal stem cells with cardiomyocytes via VSV-G facilitates stem cell programming. Stem Cells Int. 2012;2012:414038.
Article PubMed PubMed Central CAS Google Scholar
Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun. 2007;354(3):7006.
Article CAS PubMed PubMed Central Google Scholar
Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):5463.
Article CAS PubMed PubMed Central Google Scholar
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem Cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23(3):687.
Article PubMed Central CAS Google Scholar
Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:7282.
Article PubMed PubMed Central Google Scholar
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 2016;1416:12346.
Article CAS PubMed Google Scholar
Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, et al. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells. 2016;34(2):48392.
Article CAS PubMed Google Scholar
Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica. 2013;98(6):88895.
Article CAS PubMed PubMed Central Google Scholar
Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res. 2011;91(3):40211.
Article CAS PubMed PubMed Central Google Scholar
Wang CY, Yang HB, Hsu HS, Chen LL, Tsai CC, Tsai KS, et al. Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J Tissue Eng Regen Med. 2012;6(7):55969.
Link:
Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety ...
- Fate and long-lasting therapeutic effects of mesenchymal stromal/stem ... - February 6th, 2025
- Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2 - Nature.com - January 31st, 2025
- The role of ultrasound combined with water bath in the establishment of animal models of rat urethral stricture - Nature.com - January 25th, 2025
- Why exosome therapy is 2025s It skincare trend - Harpers Bazaar India - January 23rd, 2025
- Identification of glutamine as a potential therapeutic target in dry eye disease - Nature.com - January 23rd, 2025
- Polycystin-1 regulates tendon-derived mesenchymal stem cells fate and matrix organization in heterotopic ossification - Nature.com - January 21st, 2025
- Correction: Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea -... - January 21st, 2025
- Adipose-Derived Stem Cell Therapy Combined With Platelet-Rich Plasma for the Treatment of Avascular Necrosis of the Talus - Cureus - January 19th, 2025
- Q&A: Mesenchymal stem cells where do they come from and is ... - January 19th, 2025
- An overview of mesenchymal stem cells and their potential ... - January 19th, 2025
- Senescent mesenchymal stem/stromal cells and restoring their cellular ... - January 13th, 2025
- Mesenchymal Stem Cells and Reticulated Platelets: New Horizons in ... - January 13th, 2025
- Mesenchymal Stem Cells/Medicinal Signaling Cells (MSCs) - GlobeNewswire - January 13th, 2025
- A SAGE View of Mesenchymal Stem Cells - PMC - January 13th, 2025
- Mesenchymal stem cell perspective: cell biology to clinical progress - January 3rd, 2025
- Canid alphaherpesvirus 1 infection alters the gene expression and secretome profile of canine adipose-derived mesenchymal stem cells in vitro -... - December 28th, 2024
- MSC-derived exosomal circMYO9B accelerates diabetic wound healing by promoting angiogenesis through the hnRNPU/CBL/KDM1A/VEGFA axis - Nature.com - December 27th, 2024
- Korean researchers prove stem cell therapys effectiveness for hereditary cerebellar ataxia in animal models - KBR - December 25th, 2024
- FDA Approves First MSC Therapy in Steroid-Refractory GVHD - www.oncnursingnews.com/ - December 25th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid ... - December 22nd, 2024
- FDA Approves Mesenchymal Stromal Cell Therapy for Refractory Acute GVHD in Kids - Medpage Today - December 20th, 2024
- FDA Grants First-Ever Approval for MSC Therapy to Australian Company Mesoblast After Attempting for 4 Years - geneonline - December 20th, 2024
- Mesoblast's Cell Therapy Treatment For Graft Versus Host Disease Gets FDA Approval, Stock Surges - Benzinga - December 20th, 2024
- Mesoblast finally pushes GvHD cell therapy over finish line - pharmaphorum - December 20th, 2024
- Mesenchymal stem cells in health and disease - PubMed - December 19th, 2024
- Mesoblast's RYONCIL is the First U.S. FDA-Approved Mesenchymal Stromal Cell (MSC) Therapy - The Manila Times - December 19th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid-refractory Acute Graft-versus-host Disease - PR Newswire - December 19th, 2024
- RFK Jr. could prove a surprise boon for stem-cell stocks with pivotal year ahead - MarketWatch - December 17th, 2024
- An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung - Science - December 15th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Eterna Therapeutics Launches Research to Evaluate its Lead Induced Mesenchymal Stem Cell Therapy Candidates (ERNA-101) Ability to Induce and Modulate... - December 7th, 2024
- Enhanced osteogenic potential of iPSC-derived mesenchymal progenitor cells following genome editing of GWAS variants in the RUNX1 gene - Nature.com - December 7th, 2024
- Exploring the potential of MSCs in cancer therapy - News-Medical.Net - December 5th, 2024
- Eterna Therapeutics Partners with MD Anderson to Advance Cancer Cell Therapy Research | ERNA Stock News - StockTitan - December 5th, 2024
- How breast cancer cells survive in bone marrow after remission - Medical Xpress - December 5th, 2024
- A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes... - December 1st, 2024
- Mesenchymal stromal cells alleviate depressive and anxiety-like ... - December 1st, 2024
- Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus ... - December 1st, 2024
- Exploring mesenchymal stem cells homing mechanisms and ... - PubMed - November 26th, 2024
- Macrophage tracking with USPIO imaging and T2 mapping predicts immune rejection of transplanted stem cells - Nature.com - November 26th, 2024
- IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity - Nature.com - November 26th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - November 26th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 25th, 2024
- Engineering bone/cartilage organoids: strategy, progress, and application - Nature.com - November 25th, 2024
- Proteomic analysis of human Whartons jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic... - November 20th, 2024
- Clinical outcomes of autologous adipose-derived mesenchymal stem cell combined with high tibial osteotomy for knee osteoarthritis are correlated with... - November 20th, 2024
- Mesenchymal stem cells lineage and their role in disease development - November 18th, 2024
- Mesenchymal Stem Cells - SpringerLink - November 18th, 2024
- Exosomes: The Insulin of Our Era? - University of Miami - November 18th, 2024
- Partner Perspectives: Mesenchymal Stromal Cells Could Serve as Preventive Therapy for Chronic Radiation-Induced Dry Mouth - OncLive - November 10th, 2024
- Skin-care founder Angela Caglia on the stem cell technology that created 437% sales growth: 'It's transformed the business' - Glossy - November 8th, 2024
- Substantial Overview on Mesenchymal Stem Cell Biological and Physical ... - November 8th, 2024
- Regenerative Medical Technology Group Announces the Opening of New Clinic in Dubai on November 23 - Newswire - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - StockTitan - November 8th, 2024
- Stem cell science is dominating the luxury skin-care market as human-derived ingredients become less taboo - Glossy - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - The Manila Times - November 8th, 2024
- SMART researchers develop a method to enhance effectiveness of cartilage repair therapy - MIT News - October 25th, 2024
- Biological functions of mesenchymal stem cells and clinical ... - October 24th, 2024
- Chemical-defined medium supporting the expansion of human mesenchymal ... - October 24th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - PMC - October 24th, 2024
- Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools - Nature.com - October 20th, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 20th, 2024
- Sources and Clinical Applications of Mesenchymal Stem Cells - October 20th, 2024
- Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth - Nature.com - October 18th, 2024
- Researchers pioneer novel method to enhance effectiveness of MSC therapy for cartilage repair - Medical Xpress - October 18th, 2024
- Healing begins with research: Promising development program on stem cells in rare diseases - Yahoo! Voices - October 15th, 2024
- Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles - Nature.com - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - Health Tech World - October 14th, 2024
- miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration - Nature.com - October 11th, 2024
- Effects, methods and limits of the cryopreservation on mesenchymal stem ... - October 10th, 2024
- ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m6A modification of VDAC3... - October 10th, 2024
- Mesenchymal stromal cells: Biology of adult mesenchymal stem cells ... - October 8th, 2024
- Clever Robotic clothing and manufactured stem cells to treat cancer among revolutionary healthcare tech projects - University of Strathclyde - October 8th, 2024
- Dr. Peisong Gao, MD, PhD - Hopkins Medicine - October 4th, 2024
- Research to Boost Bone Formation Informs Orthopaedic Treatments - October 4th, 2024
- Garza Laboratory - Johns Hopkins Medicine - October 4th, 2024
- Stem Cell Treatment Promises to Prevent Disease and Slow Aging - Newsweek - September 30th, 2024
- Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells - Journal of Translational... - September 28th, 2024
- A mathematical insight to control the disease psoriasis using mesenchymal stem cell transplantation with a biologic inhibitor - Nature.com - September 20th, 2024
- Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production -... - September 20th, 2024
Recent Comments