INTRODUCTION
In the development of stem cell-based therapeutic platforms for tissue regeneration, the selection of which type of stem cell to use will be enormously important. Adult mesenchymal stem cells (MSCs) are considered one of the most promising tools for cell and cell-based gene therapy in bone repair (Gafni et al., 2004). Adult MSCs have been shown to possess the potential to differentiate into several lineages including bone, cartilage, fat, tendon, muscle, and marrow stroma (Haynesworth et al., 1992; Mackay et al., 1998; Yoo et al., 1998; Young et al., 1998; reviewed by Caplan and Bruder, 2001). The best known source of MSCs in adult humans is the bone marrow (BM) compartment; this region contains several types of cells, including those of the hematopoietic lineage as well as endothelial cells (ECs) and MSCs that are part of the marrow stromal system (Pittenger et al., 1999). Other sources of MSCs have also been identified, such as fat tissue (Zuk et al., 2001, 2002), cord blood (Hong et al., 2005; Jeong et al., 2005; Moon et al., 2005), and peripheral blood, although the latter finding is still controversial (Fernandez et al., 1997; Conrad et al., 2002).
Several protocols were recently established to enable regeneration of large bone defects by using human MSCs (hMSCs) that have been expanded in culture. These cells differentiate into osteogenic cells and, as vehicles, deliver a therapeutic gene product such as one of the bone morphogenetic proteins (BMPs) (Turgeman et al., 2001; Peterson et al., 2005; reviewed by Gamradt and Lieberman, 2004). It has been shown that in combination with BMP-2, hMSCs are able to heal full-thickness nonunion bone defects (Turgeman et al., 2001; Dragoo et al., 2003). In addition, Lee et al. (2001) have demonstrated that, following transduction with retroviral vectors, in vivo implantation, and differentiation, hMSCs can maintain stable expression of the therapeutic gene. In these studies, MSCs were isolated from BM, expanded in culture (in some cases genetically engineered) and implanted in vivo. Reports of these studies and many others have emphasized the benefit of MSCs as vehicles for cell-mediated gene therapy in the field of orthopedics (Gafni et al., 2004). In addition, MSCs have been implemented in regeneration of the heart (cardiac muscle and vascular system), skeletal muscle, nerve, liver, and pancreas, with regeneration of cardiac tissue being foremost (Burt et al., 2002; Lardon et al., 2002; Bonafe et al., 2003; Dabeva et al., 2003; Abedin et al., 2004; Kim et al., 2004; Jain et al., 2005; Sonoyama et al., 2005; Goncalves et al., 2006).
In cell-based therapies, the culture expansion stage is extremely costly and time consuming, and in many cases cells may lose their multipotentiality in vivo and fail to meet the desired goal. Rubio et al. (2005) reported that cultured hMSCs can undergo spontaneous transformation as a consequence of in vitro expansion. In very few articles has the use of noncultured freshly isolated hMSCs been described. Recently, CD105+ hMSCs were isolated from BM and were shown to exhibit in vivo osteogenic potential prior to in vitro expansion suggesting the utilization of these cells as freshly isolated population and avoiding the culture-expansion stage (Aslan et al., 2006b). Horwitz et al. (1999) showed that hMSCs present in unprocessed BM allografts engraft and may provide a stem cell reservoir for the differentiation and renewal of osteoblasts. The enrichment of mesenchymal progenitors, derived from fresh BM aspirates, in cancellous bone matrices has been found to increase bone formation and the bone union score significantly in a spinal fusion model (Muschler et al., 2003). Rombouts and Ploemacher have demonstrated that culture expansion attenuates the homing ability of MSCs after systemic infusion in irradiated mice (Rombouts et al., 2003). This indicates that MSCs may lose some of their natural stem cell characteristics following expansion in vitro. Other investigators have proposed that all known characteristics of MSCs may be an outcome of the culture stage and do not really represent the actual characteristics of MSCs residing in vivo at the BM niche (Javazon et al., 2004).
The isolation of an hMSC-enriched population requires an efficient and reproducible method. Few methods have been described for the isolation of MSCs, including enhancement of the plastic-adherence property of the cells by using selected amounts of fetal calf serum (FCS) (Kadiyala et al., 1997; Pittenger et al., 1999) and immunomagnetic isolation based on the presence of the STRO-1 surface molecule (Gronthos et al., 1995, 2003). These methods have not been used in any study to show the differentiation potential of cells before culture expansion.
In the study conducted by Majumdar et al. (2000), the anti-CD105 (endoglin) antibody was used to isolate cells from human BM aspirates; after expansion in culture these cells differentiated in vitro into chondrogenic cells and displayed an immunophenotype distinctive to hMSCs. We recently reported that we used the CD105-based immunoisolation method to obtain a fresh noncultured population of hMSCs and to determine these cells' osteogenic potential both in vitro and in vivo. Our results demonstrate that this noncultured population of adult stem cells can be genetically engineered and induced to undergo osteogenic differentiation in vivo thus showing the cells' potential to serve as an attractive therapeutic tool for bone regeneration purposes (Aslan et al., 2006b).
One striking feature of MSC therapy is the cumulative data on the tolerance shown by the host to allogeneic MSCs. The mechanisms by which this immunotolerance exist are complex and have not yet been thoroughly identified. It has been shown that there is a low expression of alloantigens by MSCs, and this might involve cell contact-dependent or -independent pathways, which are modulated by secretion of soluble factors such as interleukin (IL)-2 and IL-10, transforming growth factor-beta1 (TGF1), prostaglandin E2 (PGE2), and hepatocyte growth factor (HGF) among others. Immune system cells, such as dendritic cells (DCs) and T-cells, have also been shown to be affected by the presence of MSCs in mixed lymphocyte cultures (MLCs) (Beyth et al., 2005). In addition to the advantage that these cells offer the field of regenerative medicine, MSCs provide prophylaxis against graft-versus-host disease in cases of allogeneic hematopoietic stem cell (HSC) transplantation.
Excerpt from:
Mesenchymal Stem Cell - an overview | ScienceDirect Topics
- The role of ultrasound combined with water bath in the establishment of animal models of rat urethral stricture - Nature.com - January 25th, 2025
- Why exosome therapy is 2025s It skincare trend - Harpers Bazaar India - January 23rd, 2025
- Identification of glutamine as a potential therapeutic target in dry eye disease - Nature.com - January 23rd, 2025
- Polycystin-1 regulates tendon-derived mesenchymal stem cells fate and matrix organization in heterotopic ossification - Nature.com - January 21st, 2025
- Correction: Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea -... - January 21st, 2025
- Adipose-Derived Stem Cell Therapy Combined With Platelet-Rich Plasma for the Treatment of Avascular Necrosis of the Talus - Cureus - January 19th, 2025
- Q&A: Mesenchymal stem cells where do they come from and is ... - January 19th, 2025
- An overview of mesenchymal stem cells and their potential ... - January 19th, 2025
- Senescent mesenchymal stem/stromal cells and restoring their cellular ... - January 13th, 2025
- Mesenchymal Stem Cells and Reticulated Platelets: New Horizons in ... - January 13th, 2025
- Mesenchymal Stem Cells/Medicinal Signaling Cells (MSCs) - GlobeNewswire - January 13th, 2025
- A SAGE View of Mesenchymal Stem Cells - PMC - January 13th, 2025
- Mesenchymal stem cell perspective: cell biology to clinical progress - January 3rd, 2025
- Canid alphaherpesvirus 1 infection alters the gene expression and secretome profile of canine adipose-derived mesenchymal stem cells in vitro -... - December 28th, 2024
- MSC-derived exosomal circMYO9B accelerates diabetic wound healing by promoting angiogenesis through the hnRNPU/CBL/KDM1A/VEGFA axis - Nature.com - December 27th, 2024
- Korean researchers prove stem cell therapys effectiveness for hereditary cerebellar ataxia in animal models - KBR - December 25th, 2024
- FDA Approves First MSC Therapy in Steroid-Refractory GVHD - www.oncnursingnews.com/ - December 25th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid ... - December 22nd, 2024
- FDA Approves Mesenchymal Stromal Cell Therapy for Refractory Acute GVHD in Kids - Medpage Today - December 20th, 2024
- FDA Grants First-Ever Approval for MSC Therapy to Australian Company Mesoblast After Attempting for 4 Years - geneonline - December 20th, 2024
- Mesoblast's Cell Therapy Treatment For Graft Versus Host Disease Gets FDA Approval, Stock Surges - Benzinga - December 20th, 2024
- Mesoblast finally pushes GvHD cell therapy over finish line - pharmaphorum - December 20th, 2024
- Mesenchymal stem cells in health and disease - PubMed - December 19th, 2024
- Mesoblast's RYONCIL is the First U.S. FDA-Approved Mesenchymal Stromal Cell (MSC) Therapy - The Manila Times - December 19th, 2024
- FDA Approves First Mesenchymal Stromal Cell Therapy to Treat Steroid-refractory Acute Graft-versus-host Disease - PR Newswire - December 19th, 2024
- RFK Jr. could prove a surprise boon for stem-cell stocks with pivotal year ahead - MarketWatch - December 17th, 2024
- An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung - Science - December 15th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Eterna Therapeutics Launches Research to Evaluate its Lead Induced Mesenchymal Stem Cell Therapy Candidates (ERNA-101) Ability to Induce and Modulate... - December 7th, 2024
- Enhanced osteogenic potential of iPSC-derived mesenchymal progenitor cells following genome editing of GWAS variants in the RUNX1 gene - Nature.com - December 7th, 2024
- Exploring the potential of MSCs in cancer therapy - News-Medical.Net - December 5th, 2024
- Eterna Therapeutics Partners with MD Anderson to Advance Cancer Cell Therapy Research | ERNA Stock News - StockTitan - December 5th, 2024
- How breast cancer cells survive in bone marrow after remission - Medical Xpress - December 5th, 2024
- A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes... - December 1st, 2024
- Mesenchymal stromal cells alleviate depressive and anxiety-like ... - December 1st, 2024
- Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus ... - December 1st, 2024
- Exploring mesenchymal stem cells homing mechanisms and ... - PubMed - November 26th, 2024
- Macrophage tracking with USPIO imaging and T2 mapping predicts immune rejection of transplanted stem cells - Nature.com - November 26th, 2024
- IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity - Nature.com - November 26th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - November 26th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 25th, 2024
- Engineering bone/cartilage organoids: strategy, progress, and application - Nature.com - November 25th, 2024
- Proteomic analysis of human Whartons jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic... - November 20th, 2024
- Clinical outcomes of autologous adipose-derived mesenchymal stem cell combined with high tibial osteotomy for knee osteoarthritis are correlated with... - November 20th, 2024
- Mesenchymal stem cells lineage and their role in disease development - November 18th, 2024
- Mesenchymal Stem Cells - SpringerLink - November 18th, 2024
- Exosomes: The Insulin of Our Era? - University of Miami - November 18th, 2024
- Partner Perspectives: Mesenchymal Stromal Cells Could Serve as Preventive Therapy for Chronic Radiation-Induced Dry Mouth - OncLive - November 10th, 2024
- Skin-care founder Angela Caglia on the stem cell technology that created 437% sales growth: 'It's transformed the business' - Glossy - November 8th, 2024
- Substantial Overview on Mesenchymal Stem Cell Biological and Physical ... - November 8th, 2024
- Regenerative Medical Technology Group Announces the Opening of New Clinic in Dubai on November 23 - Newswire - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - StockTitan - November 8th, 2024
- Stem cell science is dominating the luxury skin-care market as human-derived ingredients become less taboo - Glossy - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - The Manila Times - November 8th, 2024
- SMART researchers develop a method to enhance effectiveness of cartilage repair therapy - MIT News - October 25th, 2024
- Biological functions of mesenchymal stem cells and clinical ... - October 24th, 2024
- Chemical-defined medium supporting the expansion of human mesenchymal ... - October 24th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - PMC - October 24th, 2024
- Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools - Nature.com - October 20th, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 20th, 2024
- Sources and Clinical Applications of Mesenchymal Stem Cells - October 20th, 2024
- Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth - Nature.com - October 18th, 2024
- Researchers pioneer novel method to enhance effectiveness of MSC therapy for cartilage repair - Medical Xpress - October 18th, 2024
- Healing begins with research: Promising development program on stem cells in rare diseases - Yahoo! Voices - October 15th, 2024
- Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles - Nature.com - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - Health Tech World - October 14th, 2024
- miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration - Nature.com - October 11th, 2024
- Effects, methods and limits of the cryopreservation on mesenchymal stem ... - October 10th, 2024
- ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m6A modification of VDAC3... - October 10th, 2024
- Mesenchymal stromal cells: Biology of adult mesenchymal stem cells ... - October 8th, 2024
- Clever Robotic clothing and manufactured stem cells to treat cancer among revolutionary healthcare tech projects - University of Strathclyde - October 8th, 2024
- Dr. Peisong Gao, MD, PhD - Hopkins Medicine - October 4th, 2024
- Research to Boost Bone Formation Informs Orthopaedic Treatments - October 4th, 2024
- Garza Laboratory - Johns Hopkins Medicine - October 4th, 2024
- Stem Cell Treatment Promises to Prevent Disease and Slow Aging - Newsweek - September 30th, 2024
- Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells - Journal of Translational... - September 28th, 2024
- A mathematical insight to control the disease psoriasis using mesenchymal stem cell transplantation with a biologic inhibitor - Nature.com - September 20th, 2024
- Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production -... - September 20th, 2024
- Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB - Nature.com - September 20th, 2024
- Strategic targeting of miR-183 and -catenin to enhance BMSC stemness in age-related osteoporosis therapy - Nature.com - September 16th, 2024
Recent Comments