When planarian flatworms want to reproduce, some have sex. Others, more straightforwardly, tear themselves in two.
The latter option is fast and violent. The planarian begins as a small, flattened, sluglike creature with a spade-shaped head and two googly eyes. After a few minutes of stretching and ripping, it separates into two halvesa head and a tail. Within days, the head piece grows a tail. And even more miraculously, the tail regrows its head. Its just mind-blowing, Eva-Maria Collins of Swarthmore College, who studies these animals, told me. Breeding them is a cinch: Given enough food, planarians will repeatedly double themselves by halving themselves. And if Collins needs more animals quickly, she can do with a scalpel what the worms do with their own muscles. As the naturalist John Graham Dalyell wrote in 1814, planarians could almost be called immortal under the edge of the knife.
There are thousands of species of planarians, and theyre all very different from more familiar worms like earthworms. Their bodies are basket-weaves of muscle and connective tissue, with no internal cavities full of soft organs. The mouth lies in the middle of the underside, and doubles as an anus. They release liquid waste through pores on their backs. They get oxygen through diffusion, and lack lungs, gills, hearts, and blood vessels. They do have brains of sortstwo clusters of neurons in the head. These lead to a ladder-shaped nervous system of two nerve cords that run down the body and are connected by crosswise rungs.
Read: The bodys most embarrassing organ is an evolutionary marvel
This unusual anatomy is even stranger because it can tolerate bisection. The feat has intrigued people since at least the ninth century, but it is hard to observe. Planarians self-fragment just once a month, and the process is over within minutes. They also prefer to split in the dark and will stop if disturbed. To study them, Collins and her team filmed one species, Dugesia japonica, continuously for months. They saw that the creature begins its self-dissection by contracting its midsection to create a waist, changing its shape from a cigar into an hourglass. It then anchors its head and tailto a petri dish in the lab, but usually an underwater rock in the wildand contracts the intervening muscles, repeatedly stretching the flesh of the waist until it ruptures. (The process varies among species; in Schmidtea mediterranea, the bigger the worm, the more chunks it can tear off its tail end.)
Once a worm has split, the fragments dont just sit around. As soon as theyre free of each other, both parts seem to possess the properties of a perfect animal, moving about in the water in the same gliding manner as before the separation, the naturalist James Rawlins Johnson wrote in 1822. Two centuries later, Collins showed that this autonomy is more profound than anyone had suspected. Her team (including the undergraduate students Dylan Le and Ziad Sabry and a high schooler, Aarav Chandra) showed that an intact planarian will turn if prodded in the head, stretch if prodded in the middle, and contract if prodded in the tail. But if that planarian is cut into three sectionshead, trunk, and taileach piece behaves like the full creature. The front end of the trunk piece will turn as if its a head, and the back end will contract as if its a tail.
Read: Decapitated worms get better, see again
Collins thinks that the neural circuits controlling these behaviors repeat down the length of the planarian, so that every part of the body is capable of acting like a head, a trunk, or a tail. The presence of an actual head normally stops downstream regions from acting like one. But upon decapitation, the frontmost part of the remaining planarian can assume the duties of the now-missing head. Collins sees this extreme adaptability as a survival strategy. It means that every fragment can flee from danger, giving it enough time for its extraordinary regenerative powers to kick in.
Not all planarians can regenerate, but those that can tend to be spectacular at it. When food is scarce, they can degrow by destroying their own cells, only to bulk up again when conditions improve. They defy the aging process by regularly replacing their old tissues and organs. They can recover from almost any physical injury (although some are trickier; an incision between the eyes can prompt a planarian to regenerate two heads). The biologist Thomas Hunt Morgan once estimated that a full planarian could regenerate from just one 279th of its body. Not many animals can regenerate their nervous systems, and Im not aware of any others that can regrow a brain, says On Pagn of West Chester University of Pennsylvania, who wrote The First Brain: The Neuroscience of Planarians.
Read: The brain that wasnt supposed to heal
When planarians divide naturally, the head fragment is usually bigger and contains the brain, eyes, smell and taste sensors, and mouth. The head piece just needs to heal up the wound and go on its way, Collins told me. The tail, meanwhile, must regenerate everything else. Without a mouth, it has no way of acquiring nutrients. Instead, some of its cells self-destruct to provide the raw material for making new flesh. Slowly, the isolated tail undergoes a massive remodeling, Alejandro Snchez Alvarado, a planarian expert at the Stowers Institute, told me, and what you end up with is a tiny version of the original animal. Tail pieces are about 10 times more likely to die than head ones, Collins added, but still, about seven in eight survive.
These powers depend on special cells called neoblasts, which have been found only in planarians. They are distributed throughout the creatures body, making up about 25 to 30 percent of its cells. In 2014, a team led by Peter Reddien of MIT bombarded a planarian with a fatal dose of radiation and transplanted a single neoblastjust onefrom a second individual onto the doomed animals tail. As the recipient died from the head downward, the transplanted neoblast started producing new tissues from the tail upward. The new cells eventually replaced all the dying ones, as if the donor planarian, through a single cell, had taken over and revitalized the recipients cadaver. After two weeks, a complete and healthy animala planarian of Theseuscrawled away.
Read: Growing organs on apples
Of course, most animals grow from a single fertilized egg. But as that egg becomes an embryo, the cells within it become more set in their ways. A skin cell does not turn into a neuron. Stem cells are more flexible but, in adult animals, even they have their limits: A blood stem cell cannot make liver or heart cells. The neoblasts of adult planarians have no such restrictions. They are pieces of unfettered possibility, capable of producing any tissue or organ.
Neoblasts dont work in isolation. The one that Reddien transplanted didnt start making eyes or a brain; it created tissues appropriate for its location. Thats because the concentrations of certain molecules change along the length of the planarian, from front to back and top to bottom. This creates a kind of coordinate system, which tells the cells in each section where they are in the overall body plan. They can use that information during the regeneration process to regrow what is needed. Heads regenerate tails, not extra heads (although mistakes can occur). Tails make heads. Trunks sprout heads and tails. And no matter their origins, the new animals seem to remember something of their past existence.
In the 1950s and 60s, the biologist James V. McConnell showed that headless planarians that were forced to regrow their brains could still remember behaviors that they learned before their decapitation. He even published results suggesting that untrained planarians could perform behaviors that trained ones had learned if the former cannibalized ground-up pieces of the latter. Skeptics criticized these experiments and argued that McConnell simply saw behavior that he wanted to see. But decades later, Mike Levin and Tal Shomrat of Tufts University developed a machine that could automatically train and track planarians without any human interference or bias. They showed that worms that were trained to recognize the texture of a rough petri dish could still do so after being decapitated and regrowing new heads.
Read: A brainless slime that shares memories by fusing
At minimum, Levin argues, this shows that memories can indeed be stored outside the brain. It also strengthens his feeling that the textbook view of memorythat its encoded by the strength of synaptic connections between different neuronsis wrong. Instead, Levin suspects that nervous systems may have evolved to interpret memories and not encode them; they are stored elsewhere, in some aspect of our cells that no one has yet pinned down. This is, to be clear, highly speculative. We only have one study and its far from definitive, Levin told me. But this is one of many pieces of data suggesting that we dont really understand memory at all.
Planarians complicate other seemingly simple concepts too. Consider a question that Levin and his colleagues posed in 2016: After a bisected planarian regenerates into two new animals, would the planarian that grew from the head consider the one that grew from the tail to be its twin, its sibling, its child, or itself? The answer isnt obvious, because these words were defined by humansa species that, last I checked, cannot reproduce by rending ourselves apart. The things that are weird are exactly the things you need to be paying attention to, Levin told me. They tell you that your model of the world is incomplete in important ways. You have to treasure the exceptions.
Read: The solution to human regeneration may hang in a long-neglected branch of science
Planarians are certainly exceptional, but theyre not unique in their talents. Many other animals can regenerate missing body parts, including salamanders, lizards, and starfish. Several can reproduce by splitting in two, including sea anemones and the tentacled Hydra. Many scientists study these creatures in hopes of finding medical breakthroughs that can restore damaged organs and lost limbs. But the more immediate prize is realizing how incomplete our understanding of nature is, and how constrained our language and concepts have been by our own inflexible, indivisible bodies.
More:
Flatworms Can Reproduce by Ripping Themselves in Half - The Atlantic
- Adult Stem Cells: What They Are and What They Do - February 6th, 2025
- What Are Adult Stem Cells and Are They Right for You? - February 6th, 2025
- Stem Cell Program | Adult Stem Cells - Boston Children's Hospital - February 6th, 2025
- Different Types Of Stem Cells: Embryonic Vs. Adult ... - January 17th, 2025
- Rejuvenation of Aging Adult Stem Cells to Improve their Regenerative Potential - Frontiers - January 13th, 2025
- Hope Biosciences Research Foundation Authorized to Begin Phase II Clinical Trial in Stem Cell Therapy for Juvenile Idiopathic Arthritis - Business... - December 22nd, 2024
- What Are Stem Cells? Biomedical Beat Blog National Institute of ... - November 29th, 2024
- TVHS opens stem cell processing lab to expand biotherapies | VA Tennessee Valley health care | Veterans Affairs - Veterans Affairs - November 8th, 2024
- Understanding Mature Tissue or Organ Stem Cells and Their Clinical ... - November 8th, 2024
- Biology of stem cells: an overview - PMC - PubMed Central (PMC) - October 30th, 2024
- New government tech deals boost the business of cancer detection - GOV.UK - October 11th, 2024
- Stem cell therapy reverses type 1 diabetes in world first - Yahoo News UK - October 11th, 2024
- Advances in different adult stem cell-derived exosomal non-coding RNAs for the treatment of neurological disorders: a narrative review - Frontiers - September 26th, 2024
- Breakthrough technique may help speed understanding, treatment of MD, ALS - Harvard Gazette - September 14th, 2024
- Rostock University Explores Use of Stem Cells for Meat Cultivation with Help from Innocent Meat - vegconomist - the vegan business magazine - August 12th, 2024
- Entero Therapeutics’ Chairman and CEO James Sapirstein Provides Business Update with Focus on Latiglutenase Development Program - July 31st, 2024
- Atea Pharmaceuticals to Host Second Quarter 2024 Financial Results Conference Call on August 7, 2024 - July 31st, 2024
- Amarin Reports Second Quarter 2024 Financial Results and Provides Business Update - July 31st, 2024
- Fulcrum Therapeutics Announces Recent Business Highlights and Financial Results for Second Quarter 2024 - July 31st, 2024
- Ocular Therapeutix™ to Report Second Quarter 2024 Financial Results on August 7, 2024 - July 31st, 2024
- Kymera Therapeutics to Report Second Quarter 2024 Financial Results on August 7 - July 31st, 2024
- Paratek Pharmaceuticals Completes Five-Year Microbiologic Surveillance Study of NUZYRA® (omadacycline) Demonstrating No Change in In Vitro Potency... - July 31st, 2024
- Targeting the stem cell niche micro-environment as therapeutic strategies in aging - Frontiers - June 28th, 2024
- International trial introduces another curative option for sickle cell disease - EurekAlert - June 28th, 2024
- HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation - Frontiers - June 28th, 2024
- Avenue Therapeutics to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Intelligent Bio Solutions Broadens UK Customer Base by Securing Two Key Accounts with Over 70 Locations and Over 15,000 Employees in the Warehouse and... - June 21st, 2024
- Altamira Therapeutics Highlights Newly Published Review Article Supporting Use of Betahistine in Vertigo Management - June 21st, 2024
- Scilex Holding Company Partners with New National Distributor, Endeavor Distribution LLC. - June 21st, 2024
- Firefly Neuroscience, an AI-Driven Brain Health Company, Appoints Samer Kaba, MD as Chief Medical Officer - June 21st, 2024
- API and the University of Alberta Break Ground in Edmonton on Canada’s Largest Manufacturing Facility for Critical Medicines - June 21st, 2024
- Syntekabio Signs Memorandum of Understanding with bioSeedin/ACROBiosystems - June 21st, 2024
- Rapafusyn Pharmaceuticals Secures $28 Million Series A to Advance Its Non-Degrading Molecular Glue Drug Discovery Platform - June 21st, 2024
- Zealand Pharma announces positive topline results from the Phase 1b 16-week multiple ascending dose clinical trial with long-acting amylin analog... - June 21st, 2024
- Rakovina Therapeutics Announces Oversubscribed Private Placement and Results from 2024 Annual General Meeting - June 21st, 2024
- Cellectis Publishes a Scientific Article Unveiling Three Key Factors for Efficient TALE Base Editing - June 21st, 2024
- NextCure to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Press Release: ISTH: Sanofi advances leadership in hemophilia with new data for ALTUVIIIO and fitusiran - June 21st, 2024
- Idorsia’s novel treatment for chronic insomnia wins the prestigious Prix Galien Suisse 2024 innovation award in the ‘Primary & Speciality’... - June 21st, 2024
- Radiopharm Receives Strategic Investment for up to A$18 million - June 21st, 2024
- Press Release: Audrey Duval Derveloy appointed Global Head of Corporate Affairs, member of Sanofi’s Executive Committee - June 21st, 2024
- Trading by management and close relations of management - June 21st, 2024
- Major shareholder announcement - June 21st, 2024
- Iovance Biotherapeutics Reports Inducement Grants under NASDAQ Listing Rule 5635(c)(4) - June 21st, 2024
- Nature retracts highly cited 2002 paper that claimed adult stem cells could become any type of cell - Retraction Watch - June 19th, 2024
- Shares of Biotech MicroCap Rip on Licensing Talks - The Globe and Mail - June 15th, 2024
- Syntekabio to Showcase Advanced AI Drug Discovery Technologies at BIO International Convention 2024 - May 23rd, 2024
- Vaxart, Inc. Reports Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) - May 23rd, 2024
- Zealand Pharma announces topline results from the mechanistic investigator-led DREAM trial with low doses of GLP-1/GLP-2 receptor dual agonist... - May 23rd, 2024
- Hornet Therapeutics emerges from stealth with data published in Science demonstrating the first potential drug intervention for Epstein-Barr Virus... - May 23rd, 2024
- Oxurion Announces Results on the Annual Shareholders’ Meeting of 16 May 2024 - May 23rd, 2024
- New York Blood Center Enterprises Celebrates the Expansion of Cell & Gene Therapy GMP Manufacturing Capabilities at the Grand Opening of... - May 23rd, 2024
- Syneos Health Leaders Recognized as PM360 ELITE 100 Award Recipients - May 23rd, 2024
- Kane Biotech Announces First Quarter 2024 Financial Results - May 23rd, 2024
- Beyond Air® Schedules Fiscal Year End 2024 Financial Results Conference Call and Webcast - May 23rd, 2024
- Supernus Announces Promising Interim Data from Ongoing Open-Label Phase 2a Study of SPN-817 in Epilepsy - May 23rd, 2024
- Harvard Bioscience, Inc. to Present at the Jefferies Global Healthcare Conference on June 5, 2024 - May 23rd, 2024
- 23andMe Reports Fourth Quarter and Full Year Fiscal 2024 Financial Results - May 23rd, 2024
- Genmab to Showcase Data in Various Patient Populations to be Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Kymera Therapeutics to Present New Clinical Data from Ongoing Phase 1 Trial of MDM2 Degrader KT-253 at ASCO Annual Meeting - May 23rd, 2024
- Tizona Therapeutics Presents Phase 1b TTX-080 Clinical Data in Advanced Colorectal Cancer and Head and Neck Squamous Cell Carcinoma at ASCO 2024 - May 23rd, 2024
- Inotiv, Inc. to Participate in Upcoming Craig Hallum and Jefferies Investor Conferences - May 23rd, 2024
- NANOBIOTIX to Present at the Jefferies Global Healthcare Conference - May 23rd, 2024
- Replimune to Present at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Evaxion to Present New Positive Data from Ongoing Phase 2 Study on Lead Vaccine Candidate EVX-01 at the American Society of Clinical Oncology Annual... - May 23rd, 2024
- Biology of stem cells: an overview - PMC - National Center for ... - March 26th, 2024
- Iron Limitation Preserves Youthfulness of Blood Stem Cells - Mirage News - March 13th, 2024
- Mini organs grown from stem cells of unborn babies for the first time in breakthrough - The Mirror - March 9th, 2024
- The Effect of Short-Term NAD3 Supplementation on Circulating Adult Stem Cells in Healthy Individuals Aged 40-70 ... - Cureus - March 7th, 2024
- University of Liverpool Spin-Out Emerges, Pioneering Novel Adult Stem Cell-Based Therapies - India Education Diary - March 7th, 2024
- Scientists have used cells from fluid drawn during pregnancy to grow mini lungs and other organs - Yahoo News Canada - March 6th, 2024
- Japan approves new stem cell-based Alzheimer's therapy By Proactive Investors - Investing.com Australia - January 20th, 2024
- Cyberstalking pits Harvard professor against PubPeer Retraction ... - Retraction Watch - December 5th, 2023
- 10 functional health predictions for 2024, according to a doctor and ... - 1330 WFIN - December 5th, 2023
- See the Brain Like Never Before in This Gorgeous Art - Scientific American - December 5th, 2023
- Geron Announces Publication in The Lancet of Results from the ... - BioSpace - December 5th, 2023
- Stem cell injections could be the key to curing MS - Freethink - December 3rd, 2023
- Jaypirca (pirtobrutinib) Now Approved by U.S. FDA for the ... - Investors | Eli Lilly and Company - December 3rd, 2023
- Comparative Efficacy and Safety of Four JAK Inhibitors for ... - HealthDay - December 3rd, 2023
- City lights up for Francis on Anthony Nolan's birthday - Liverpool Express - December 3rd, 2023
Recent Comments