1Regenerative Medicine Centre, Arabian Gulf University, Manama, Bahrain; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
Introduction: Stroke is a leading cause of death and disability worldwide. The disease is caused by reduced blood flow into the brain resulting in the sudden death of neurons. Limited spontaneous recovery might occur after stroke or brain injury, stem cell-based therapies have been used to promote these processes as there are no drugs currently on the market to promote brain recovery or neurogenesis. Adult stem cells (ASCs) have shown the ability of differentiation and regeneration and are well studied in literature. ASCs have also demonstrated safety in clinical application and, therefore, are currently being investigated as a promising alternative intervention for the treatment of stroke.Methods: Eleven studies have been systematically selected and reviewed to determine if autologous adult stem cells are effective in the treatment of stroke. Collectively, 368 patients were enrolled across the 11 trials, out of which 195 received stem cell transplantation and 173 served as control. Using data collected from the clinical outcomes, a broad comparison and a meta-analysis were conducted by comparing studies that followed a similar study design.Results: Improvement in patients clinical outcomes was observed. However, the overall results showed no clinical significance in patients transplanted with stem cells than the control population.Conclusion: Most of the trials were early phase studies that focused on safety rather than efficacy. Stem cells have demonstrated breakthrough results in the field of regenerative medicine. Therefore, study design could be improved in the future by enrolling a larger patient population and focusing more on localized delivery rather than intravenous transplantation. Trials should also introduce a more standardized method of analyzing and reporting clinical outcomes to achieve a better comparable outcome and possibly recognize the full potential that these cells have to offer.
Keywords: adult stem cells, autologous, neurogenesis, inflammation, clinical application, stroke, stroke recovery, systematic review, meta-analysis
Stroke is the second leading cause of death worldwide and one of the leading causes of disability.1 The blockade or the rupture of a blood vessel to the brain leads to either ischemic or hemorrhagic stroke, respectively.2,3 The extent and the location of the damaged brain tissue may be associated with irreversible cognitive impairment or decline in speech, comprehension, memory, and partial or total physical paralysis.4
Four chronological phases, namely hyperacute, acute, subacute, and chronic, describe the strokes cellular manifestations.5 The hyperacute phase is immediate and associated with glutamate-mediated excitotoxicity and a progressive neuronal death that can last a few hours.6 The glutamate, a potent excitatory neurotransmitter, is also an inducer of neurodegeneration following stroke.7 The acute phase, which could last over a week after the stroke, is associated with the delayed and progressive neuronal death and the infiltration of immune cells.5 The following subacute phase can extend up to three months after the stroke and is mainly associated with reduced inflammation and increased plasticity of neurons, astrocytes, microglia, and endothelial cells, allowing spontaneous recovery.8 In the chronic phase that follows, the plasticity of cells is reduced and only permits rehabilitation-induced recovery.5
The immediate treatments differ for ischemic and hemorrhagic strokes. Immediate intervention is required to restore the blood flow to the brain following an ischemic stroke. Thrombolytic agents, such as activase (Alteplase), a recombinant tissue plasminogen activator (tPA), are commonly given intravenously to dissolve the blood clots. Other more invasive approaches, such as a thrombectomy, use stents or catheters to remove the blood clot.9 Antiplatelet agents like Aspirin, anticoagulants, blood pressure medicines, or statins are generally given to reduce the risk of recurrence. Some ischemic strokes are caused by the narrowing of the carotid artery due to the accumulation of fatty plaques; a carotid endarterectomy is performed to correct the constriction.
The treatment of a hemorrhagic stroke requires a different approach. An emergency craniotomy is usually performed to remove the blood accumulating in the brain and repair the damaged blood vessels. Accumulation of cerebrospinal fluid in brain ventricles (hydrocephalus) is also a frequent complication following a hemorrhagic stroke, which requires surgery to drain the fluid. Medications to lower blood pressure are given before surgery and to prevent further seizures.10
These immediate treatments are critical to minimize the long-term consequence of the stroke but do not address the post-stroke symptoms caused by neurodegeneration. New therapeutic approaches adapted to the physiology of each phase of the stroke are currently developed. A promising therapy has been the use of stem cells.11 In this review, different clinical trials involving the use of various stem cells for the treatment of stroke are presented and compared using a meta-analysis of the published results.
To narrow down the relevant literature, a search strategy focused on original literature and reporting the clinical application of stem cells in stroke was established. An NCBI PubMed word search for stroke, stem cells, and adult stem cells yielded 146 clinical studies between 2010 and 2021. Finally, 11 studies, using autologous adult stem cells in the treatment of stroke, were considered. A PRISMA flow diagram detailing an overview of the study selection procedure and the inclusion and exclusion of papers is included in Appendix I. The inclusion criteria comprise the injection of autologous adult stem cells at any stroke stages (hyperacute, acute, sub-acute, chronic), and clinical trials whose results have been published in the last 11 years. The exclusion criteria include studies published more than 11 years ago, studies not published in English, all preclinical studies, other diseases related to stroke (ex. cardiovascular diseases), embryonic or induced pluripotent stem cells, allogeneic stem cells, and other cell therapies. Two independent researchers reviewed and filtered the 146 studies by reading the titles and abstracts. All three authors approved the final selected studies.
Stem cells are undifferentiated and unspecialized cells characterized by their ability to self-renew and their potential to differentiate into specialized cell types.12 Ischemic stroke causes severe damage to the brain cells by destroying the heterogeneous cell population and neuronal connections along with vascular systems. The regenerative potential of several types of stem cells like embryonic stem cells, neural stem cells, adult stem cells (mesenchymal stem cells), and induced pluripotent stem cells have been assessed for treating stroke.
Adult stem cells exhibit multipotency and the ability to self-renew and differentiate into specialized cell types. They have been widely used in clinical trials and a safe option thus far in treating various diseases.12,13,14 The plasticity of these cells allow their differentiation across tissue lineages when exposed to defined cell culture conditions.15 There are multiple easily accessible sources of adult stem cells, mainly the bone marrow, blood, and adipose tissue. In clinical settings, both autologous and HLA-matched allogeneic cells have been transplanted and are deemed to be safe.
Adult stem cells can secrete a variety of bioactive substances into the injured brain following a stroke in the form of paracrine signals.1618 The paracrine signals include growth factors, trophic factors, and extracellular vesicles, which may be associated with enhanced neurogenesis, angiogenesis, and synaptogenesis (Figure 1). Also, mesenchymal stem cells (MSCs) are thought to contribute to the resolution of the stroke by attenuating inflammation,19 reducing scar thickness, enhancing autophagy, normalizing microenvironmental and metabolic profiles and possibly replacing damaged cells.20
Figure 1 Schematic depicting the clinical application of different cells in stroke patients. The cells were delivered in one of three ways, intravenously, intra-arterially, or via stereotactic injections. Once administered, the cells play a role in providing paracrine signals and growth factors to facilitate angiogenesis and cell regeneration, immunomodulatory effects that serve to protect the neurons from further damage caused by inflammation, and finally, trans-differentiation of stem cells. Data from Dabrowska S, Andrzejewska A, Lukomska B, Janowski M.19 Created with BioRender.com.
A few routes of administration have been used to deliver the stem cells to the patients. The most common is through intravenous injection. Intra-arterial delivery is also performed; but this mode can be extremely painful to patients compared to an intravenous transfusion. The third approach is via stereotactic injections. This is an invasive surgery that involves injecting the cells directly into the site of affected in the brain.
Also known as mesenchymal stromal cells or medicinal signaling cells, MSCs can be derived from different sources including bone marrow, peripheral blood, lungs, heart, skeletal muscle, adipose tissue, dental pulp, dermis, umbilical cord, placenta, amniotic fluid membrane and many more.21 MSCs are characterized by positive cell surface markers, including Stro-1, CD19, CD44, CD90, CD105, CD106, CD146, and CD166. The cells are also CD14, CD34, and CD45 negative.22,23 The cells are thought to provide a niche to stem cells in normal tissue and releases paracrine factors that promote neurogenesis (Figure 2).19,20,24 During the acute and subacute stage of stroke, MSCs may inhibit inflammation, thus, reducing the incidence of debilitating damage and symptoms that may occur post-stroke.
Figure 2 Schematic describing the role of mesenchymal stem cells in stroke. The cells release different growth factors, signals, and cytokines that serve to facilitate various functions. Through the release of cytokines, they can modulate inflammation and block apoptosis. The growth factors aid in promoting angiogenesis and neurogenesis. Data from Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E.23 Created with BioRender.com.
Derived from the bone marrow, mononuclear cells contain several types of stem cells, including mesenchymal stem cells and hematopoietic progenitor cells that give rise to hematopoietic stem cells and various other differentiated cells. They can produce and secrete multiple growth factors and cytokines. They are also attracted to the lesion or damage site where they can accelerate angiogenesis and promote repair endogenously through the proliferation of the hosts neural stem cells. Mononuclear cells have also demonstrated the ability to decrease neurodegeneration, modulate inflammation, and prevent apoptosis in animal models.25,26
Blood stem cells are a small number of bone marrow stem cells that have been mobilized into the blood by hematopoietic growth factors, which regulate the differentiation and proliferation of cells. They are increasingly used in cell therapies, most recently for the regeneration of non-hematopoietic tissue, including neurons. Recombinant human granulocyte colony-stimulating factor (G-CSF) has been used as a stimulator of hematopoiesis, which in turn amplifies the yield of peripheral blood stem cells.27
The literature review considered 11 clinical trials that satisfied the inclusion criteria. A total of 368 patients were enrolled including 179 patients treated with various types of adult stem cells. The clinical trial number 7 contained a historical control of 59 patients included in the data analysis (Figure 3). The analysis was done on the published clinical and functional outcomes of various tests such as mRS, and mBI. The analysis compared the patients clinical outcomes post stem cell therapy to the baseline clinical results. The variance in the patient population should be noted.
Figure 3 Schematic representing an overview of the total number of patients enrolled in all 11 clinical trials and the number of patients administered with each type of adult stem cell.
Abbreviations: MSC, mesenchymal stem cells; PBSC, peripheral blood stem cells; MNC, mononuclear stem cells; ADSVF, adipose derived stromal vascular fraction; ALD401, aldehyde dehydrogenase-bright stem cells.
Meta-analyses were conducted using modified Rankin scale (mRS) and Barthel Index (BI) scores. In the clinical trials, mRS and BI scores are commonly used scales to assess functional outcome in stroke patients. The BI score was developed to measures the patients performance in 10 activities of daily life from self-care to mobility. An mRS score follows a similar outcome but measures the patients independence in daily tasks rather than performance. OpenMeta[Analyst], an open-source meta-analysis software, was used to produce random-effects meta-analyses and create the forest plots. The number of patients, mean, and standard deviation (SD) of the scores were calculated to determine the study weights and create the forest plots.
All 11 clinical trials were compared based on their clinical and functional outcomes (Table 1; Figure 4). The data shows that stem cell therapy is relatively safe and viable in the treatment of stroke, indicating an improvement in patients overall health. However, when compared to the control, the improvement is not significant as patients in the control group also exhibited an improved clinical and functional outcome. Across trials that assigned a control group, the patients either received a placebo, or alternative form of treatment including physiotherapy. Variance in functional and clinical tests used to assess patients, and the number of patients enrolled in each trial results in a discrepancy in reporting. Most of the trials failed to report whether the patients suffered from an acute, subacute or chronic stroke which also affects the results of the treatments, with acute and subacute being the optimal periods to receive treatment due to cell plasticity and inhibiting unwarranted inflammation.39 The deaths in both the treatment and control population were attributed to the progression of the disease and are likely not the result of the treatment. Albeit, it has been noted down as they had occurred during the follow-up period.
Table 1 Overview of Selected Clinical Trials
Figure 4 Overview of clinical outcomes of the 11 clinical trials (N=368). (A) The chart shows the percentages of patients who have either improved, remained stable, deteriorated, or deceased. Some clinical trials are without a control arm. (B) The plot shows the overall percentage of patients that have improved after receiving either the stem cell treatment versus the standard of care. (C) The plot shows the overall percentage of patients that have remained stable and showed no clinical or functional improvement in the follow up period. (D) The plot shows the overall percentage of the patients whose condition has deteriorated in the follow up period.
A meta-analysis was conducted using modified Rankin scale (mRS) and Barthel Index (BI) scores. The results of the mRS scores were analyzed (Figure 5A; Table 2). In terms of study weights, CT6 is the highest (40.07%) as shown in Table 2. The combined results of the mRS functional test from CT1, CT5, CT6, and CT11 show a non-significant statistical heterogeneity in the studies (p-value 0.113). In conjunction, BI scores were analyzed and a meta-analysis was conducted using four comparable trials (Figure 5B; Table 3). In terms of study weights, CT3 is the highest (32.384%) as shown in Table 3. The combined results of BI scores from CT5, CT3, CT10, and CT11 show a statistical heterogeneity in the results of the studies (p-value 0.004) thus, precision of results is uncertain. More comparable studies are needed to have a better outcome. Therefore, standardized testing in trails should be considered in future trials.
Table 2 Clinical Outcomes of mRS Test
Table 3 Clinical Outcomes of BI Test
Figure 5 Meta-analysis conducted using three comparable trials. (A) Meta-analysis conducted using four comparable trials (CT1, CT5, CT6, CT11) for the mRS test. (B) Meta-analysis conducted using four comparable trials (CT3, CT5, CT10, and CT11) for the BI test.
Across all trials, patients injected with the MSCs, and other cell types did not trigger a degradation of the patient conditions demonstrating the safety of the procedures. However, the efficacy of the use of adult stem cells is less clear when compared to patients in the control group. This discrepancy could, however, exhibit improvement in patients receiving the treatment compared to the baseline clinical outcomes. However, when therapy results are compared to the patients in the control population that either received a placebo, physiotherapy, or prescribed medication, the efficacy of the use of adult stem cells is less clear.
Although multiple adult stem cell types have been used, mesenchymal stem cells have been widely used in many clinical trials. Albeit there is a consensus that the therapeutic and clinical outcomes of mesenchymal stem cell treatments are not yet significantly effective compared to the control treatment. Some trials have shown patient improvements, such as CT6 and CT8, where the investigators used PBSCs or BMMNSC, respectively. Although subjectively, the cells appear to be therapeutic, objectively, there are many limitations to the study designs included in this review. Not all the trials enrolled a control arm for a better comparison as some were only testing safety rather than efficacy. Therefore, we cannot conclude whether autologous adult stem cells are an effective therapeutic stroke treatment. Only autologous cells were included in this review as they are non-immunogenic.
Another factor to consider is the evident discrepancy in the number of patients enrolled in each trial. The trials included in this review are in Phase I and II trials, which primarily focus on safety rather than efficacy. Intravenous injection was the most used method of cell delivery due to its convenience and safety. However, it is commonly considered that this approach is not the most effective way of delivery, as the majority of the transplanted cells get absorbed by non-targeted organs, and the remaining cells find difficulty passing the blood-brain barrier. Due to this dilemma, the most obvious approach would be to inject the cells directly into the brain. However, a stereotactic procedure is invasive and will require general anesthesia, which may compromise patients health, especially ones suffering from acute ischemic stroke.40 Thus, an intra-arterial delivery seems feasible to accomplish the task as it is less invasive and might be more effective than an intravenous treatment such as the cases observed in CT3 and CT8. In CT11, the patients demonstrated a visible fmRI recovery as well as recovery of motor function in patients that have received a stem cell treatment. However, the analysis and test scores show no significance between the treatment group and the control group.
Only a few studies were comparable using a similar evaluation approach. Considering these factors, better study designs enrolling a higher number of patients in randomized clinical trial against the standard of care are needed. Moreover, a better grouping of the patients based on the type and stage of stroke may provide more relevant information for the safety and efficacy of adult stem cells for the recovery and prevention of recurrence of stroke patients.
ADSVF, Adipose-derived stromal vascular fraction; ASCs, Adult stem cells; ALD-401, Aldehyde dehydrogenase 401; BI, Barthel Index; BM-MNC, Bone marrow-derived mononuclear cells; FLAIR, Fluid attenuated inversion recovery; fMRI, Functional magnetic resonance imaging; G-CSF, Granulocyte colony-stimulating factor; MRI, Magnetic resonance imaging; MSCs, Mesenchymal stem cells; mRS, modified Rankin Scale; NIHSS, National Institute of Health Stroke Scale; PBSC, Peripheral blood stem cells; SD, Standard deviation; tPA, tissue plasminogen activator.
All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.
There is no funding to report.
We declare there is no conflict of interest.
1. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634A635A. doi:10.2471/BLT.16.181636
2. Donnan G, Fisher M, Maclead M, Davis S. Stroke. Lancet. 2008;373(9674):1496. doi:10.1016/S0140-6736(09)60833-3
3. Umut Canbek YB, Imerci A, Akgn U, Yesil M, Aydin A. Characteristics of injuries caused by paragliding accidents: a cross-sectional study. World J Emerg Med. 2015;6(1):4447. doi:10.5847/wjem.j.1920
4. Roth EJ, Heinemann AW, Lovell LL, Harvey RL, McGuire JR, Diaz S. Impairment and disability: their relation during stroke rehabilitation. Arch Phys Med Rehabil. 1998;79(3):329335. doi:10.1016/S0003-9993(98)90015-6
5. Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci. 2021. doi:10.1038/s41583-020-00396-7
6. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157188. doi:10.1016/j.pneurobio.2013.11.006
7. Fern R, Matute C. Glutamate receptors and white matter stroke. Neurosci Lett. 2019;694:8692. doi:10.1016/j.neulet.2018.11.031
8. Zhao L, Willing A. Progress in neurobiology enhancing endogenous capacity to repair a stroke-damaged brain: an evolving fi eld for stroke research. Prog Neurobiol. 2018;163164:526. doi:10.1016/j.pneurobio.2018.01.004
9. Hasan TF, Rabinstein AA, Middlebrooks EH, et al. Diagnosis and management of acute ischemic stroke. Mayo Clin Proc Themat Rev Neurosci. 2018;93(4):523538. doi:10.1016/j.mayocp.2018.02.013
10. Abraham MK, Chang WTW. Subarachnoid hemorrhage. Emerg Med Clin NA. 2016;34(4):901916. doi:10.1016/j.emc.2016.06.011
11. Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol. 2017. doi:10.1016/j.pneurobio.2017.03.003
12. Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009;24(2):98103. doi:10.1097/JCN.0b013e318197a6a5
13. Larijani B, Esfahani EN, Amini P, et al. Stem cell therapy in treatment of different diseases. Acta Med Iran. 2012;50(2):7996.
14. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204213. doi:10.1210/er.2008-0031
15. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639648. doi:10.1016/S0092-8674(04)00208-9
16. Fernndez-Susavila H, Bugallo-Casal A, Castillo J, Campos F. Adult stem cells and induced pluripotent stem cells for stroke treatment. Front Neurol. 2019;10. doi:10.3389/fneur.2019.00908
17. Bang OY. Current status of cell therapies in stroke. Int J Stem Cells. 2009;2(1):3544. doi:10.15283/ijsc.2009.2.1.35
18. Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452456. doi:10.1001/archneur.65.4.452
19. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation. 2019;16(1):117. doi:10.1186/s12974-019-1571-8
20. Wagenaar N, Nijboer CHA, Van Bel F. Repair of neonatal brain injury: bringing stem cell-based therapy into clinical practice. Dev Med Child Neurol. 2017;59(10):9971003. doi:10.1111/dmcn.13528
21. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 2015;67(5):793807. doi:10.1007/s10616-014-9718-z
22. Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol. 2013;28(9):11091116. doi:10.14670/HH-28.1109
23. Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7(2):118126. doi:10.15283/ijsc.2014.7.2.118
24. Bhartiya D. Clinical translation of stem cells for regenerative medicine: a comprehensive analysis. Circ Res. 2019;124(6):840842. doi:10.1161/CIRCRESAHA.118.313823
25. Lv W, Li WY, Xu XY, Jiang H, Bang OY. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke. Neural Regen Res. 2015;10(8):12651270. doi:10.4103/1673-5374.162759
26. Muir T. Peripheral blood mononuclear cells: a brief review origin of peripheral blood mononuclear cells; 2020:17.
27. Wang Z, Schuch G, Williams JK, Soker S. Peripheral blood stem cells. Handb Stem Cells. 2013;2:573586. doi:10.1016/B978-0-12-385942-6.00050-0
28. Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke.. Stem Cells. 2010;28(6):10991106. doi:10.1002/stem.430
29. Honmou O, Houkin K, Matsunaga T, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(6):17901807. doi:10.1093/brain/awr063
30. Banerjee S. T ISSUE -S PECIFIC P ROGENITOR AND S TEM C ELLS intra-arterial immunoselected CD34 + stem cells for acute ischemic stroke; 2014.
31. Bhasin A, Padma Srivastava MV, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):10031008. doi:10.1016/j.clineuro.2012.10.015
32. Prasad K, Sharma A, Garg A, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):36183624. doi:10.1161/STROKEAHA.114.007028
33. Chen DC, Lin S-Z, Fan J-R, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized Phase II study. Cell Transplantation. 2014;23(12):15991612. doi:10.3727/096368914X678562
34. Taguchi A, Sakai C, Soma T, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):22072218. doi:10.1089/scd.2015.0160
35. Bhatia V, Gupta V, Khurana D, Sharma RR, Khandelwal N. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke. Am J Neuroradiol. 2018;39(5):899904. doi:10.3174/ajnr.A5586
36. Duma C, Kopyov O, Kopyov A, et al. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year Phase 1 study of 113 injections in 31 patients. Mol Biol Rep. 2019;46(5):52575272. doi:10.1007/s11033-019-04983-5
37. Savitz SI, Yavagal D, Rappard G, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-stroke). Circulation. 2019;139(2):192205. doi:10.1161/CIRCULATIONAHA.117.030659
38. Jaillard A, Hommel M, Moisan A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. 2020;11(5):910923. doi:10.1007/s12975-020-00787-z
39. Kwak K-A, Kwon H-B, Lee JW, Park Y-S. Current perspectives regarding stem cell-based therapy for ischemic stroke. Curr Pharm Des. 2018;24(28):33323340. doi:10.2174/1381612824666180604111806
40. Anastasian ZH. Anaesthetic management of the patient with acute ischaemic stroke. Br J Anaesth. 2014;113:ii9ii16. doi:10.1093/bja/aeu372
Read more here:
Autologous Adult Stem Cells in the Treatment of Stroke | SCCAA - Dove Medical Press
- Adult Stem Cells: What They Are and What They Do - February 6th, 2025
- What Are Adult Stem Cells and Are They Right for You? - February 6th, 2025
- Stem Cell Program | Adult Stem Cells - Boston Children's Hospital - February 6th, 2025
- Different Types Of Stem Cells: Embryonic Vs. Adult ... - January 17th, 2025
- Rejuvenation of Aging Adult Stem Cells to Improve their Regenerative Potential - Frontiers - January 13th, 2025
- Hope Biosciences Research Foundation Authorized to Begin Phase II Clinical Trial in Stem Cell Therapy for Juvenile Idiopathic Arthritis - Business... - December 22nd, 2024
- What Are Stem Cells? Biomedical Beat Blog National Institute of ... - November 29th, 2024
- TVHS opens stem cell processing lab to expand biotherapies | VA Tennessee Valley health care | Veterans Affairs - Veterans Affairs - November 8th, 2024
- Understanding Mature Tissue or Organ Stem Cells and Their Clinical ... - November 8th, 2024
- Biology of stem cells: an overview - PMC - PubMed Central (PMC) - October 30th, 2024
- New government tech deals boost the business of cancer detection - GOV.UK - October 11th, 2024
- Stem cell therapy reverses type 1 diabetes in world first - Yahoo News UK - October 11th, 2024
- Advances in different adult stem cell-derived exosomal non-coding RNAs for the treatment of neurological disorders: a narrative review - Frontiers - September 26th, 2024
- Breakthrough technique may help speed understanding, treatment of MD, ALS - Harvard Gazette - September 14th, 2024
- Rostock University Explores Use of Stem Cells for Meat Cultivation with Help from Innocent Meat - vegconomist - the vegan business magazine - August 12th, 2024
- Entero Therapeutics’ Chairman and CEO James Sapirstein Provides Business Update with Focus on Latiglutenase Development Program - July 31st, 2024
- Atea Pharmaceuticals to Host Second Quarter 2024 Financial Results Conference Call on August 7, 2024 - July 31st, 2024
- Amarin Reports Second Quarter 2024 Financial Results and Provides Business Update - July 31st, 2024
- Fulcrum Therapeutics Announces Recent Business Highlights and Financial Results for Second Quarter 2024 - July 31st, 2024
- Ocular Therapeutix™ to Report Second Quarter 2024 Financial Results on August 7, 2024 - July 31st, 2024
- Kymera Therapeutics to Report Second Quarter 2024 Financial Results on August 7 - July 31st, 2024
- Paratek Pharmaceuticals Completes Five-Year Microbiologic Surveillance Study of NUZYRA® (omadacycline) Demonstrating No Change in In Vitro Potency... - July 31st, 2024
- Targeting the stem cell niche micro-environment as therapeutic strategies in aging - Frontiers - June 28th, 2024
- International trial introduces another curative option for sickle cell disease - EurekAlert - June 28th, 2024
- HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation - Frontiers - June 28th, 2024
- Avenue Therapeutics to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Intelligent Bio Solutions Broadens UK Customer Base by Securing Two Key Accounts with Over 70 Locations and Over 15,000 Employees in the Warehouse and... - June 21st, 2024
- Altamira Therapeutics Highlights Newly Published Review Article Supporting Use of Betahistine in Vertigo Management - June 21st, 2024
- Scilex Holding Company Partners with New National Distributor, Endeavor Distribution LLC. - June 21st, 2024
- Firefly Neuroscience, an AI-Driven Brain Health Company, Appoints Samer Kaba, MD as Chief Medical Officer - June 21st, 2024
- API and the University of Alberta Break Ground in Edmonton on Canada’s Largest Manufacturing Facility for Critical Medicines - June 21st, 2024
- Syntekabio Signs Memorandum of Understanding with bioSeedin/ACROBiosystems - June 21st, 2024
- Rapafusyn Pharmaceuticals Secures $28 Million Series A to Advance Its Non-Degrading Molecular Glue Drug Discovery Platform - June 21st, 2024
- Zealand Pharma announces positive topline results from the Phase 1b 16-week multiple ascending dose clinical trial with long-acting amylin analog... - June 21st, 2024
- Rakovina Therapeutics Announces Oversubscribed Private Placement and Results from 2024 Annual General Meeting - June 21st, 2024
- Cellectis Publishes a Scientific Article Unveiling Three Key Factors for Efficient TALE Base Editing - June 21st, 2024
- NextCure to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Press Release: ISTH: Sanofi advances leadership in hemophilia with new data for ALTUVIIIO and fitusiran - June 21st, 2024
- Idorsia’s novel treatment for chronic insomnia wins the prestigious Prix Galien Suisse 2024 innovation award in the ‘Primary & Speciality’... - June 21st, 2024
- Radiopharm Receives Strategic Investment for up to A$18 million - June 21st, 2024
- Press Release: Audrey Duval Derveloy appointed Global Head of Corporate Affairs, member of Sanofi’s Executive Committee - June 21st, 2024
- Trading by management and close relations of management - June 21st, 2024
- Major shareholder announcement - June 21st, 2024
- Iovance Biotherapeutics Reports Inducement Grants under NASDAQ Listing Rule 5635(c)(4) - June 21st, 2024
- Nature retracts highly cited 2002 paper that claimed adult stem cells could become any type of cell - Retraction Watch - June 19th, 2024
- Shares of Biotech MicroCap Rip on Licensing Talks - The Globe and Mail - June 15th, 2024
- Syntekabio to Showcase Advanced AI Drug Discovery Technologies at BIO International Convention 2024 - May 23rd, 2024
- Vaxart, Inc. Reports Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) - May 23rd, 2024
- Zealand Pharma announces topline results from the mechanistic investigator-led DREAM trial with low doses of GLP-1/GLP-2 receptor dual agonist... - May 23rd, 2024
- Hornet Therapeutics emerges from stealth with data published in Science demonstrating the first potential drug intervention for Epstein-Barr Virus... - May 23rd, 2024
- Oxurion Announces Results on the Annual Shareholders’ Meeting of 16 May 2024 - May 23rd, 2024
- New York Blood Center Enterprises Celebrates the Expansion of Cell & Gene Therapy GMP Manufacturing Capabilities at the Grand Opening of... - May 23rd, 2024
- Syneos Health Leaders Recognized as PM360 ELITE 100 Award Recipients - May 23rd, 2024
- Kane Biotech Announces First Quarter 2024 Financial Results - May 23rd, 2024
- Beyond Air® Schedules Fiscal Year End 2024 Financial Results Conference Call and Webcast - May 23rd, 2024
- Supernus Announces Promising Interim Data from Ongoing Open-Label Phase 2a Study of SPN-817 in Epilepsy - May 23rd, 2024
- Harvard Bioscience, Inc. to Present at the Jefferies Global Healthcare Conference on June 5, 2024 - May 23rd, 2024
- 23andMe Reports Fourth Quarter and Full Year Fiscal 2024 Financial Results - May 23rd, 2024
- Genmab to Showcase Data in Various Patient Populations to be Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Kymera Therapeutics to Present New Clinical Data from Ongoing Phase 1 Trial of MDM2 Degrader KT-253 at ASCO Annual Meeting - May 23rd, 2024
- Tizona Therapeutics Presents Phase 1b TTX-080 Clinical Data in Advanced Colorectal Cancer and Head and Neck Squamous Cell Carcinoma at ASCO 2024 - May 23rd, 2024
- Inotiv, Inc. to Participate in Upcoming Craig Hallum and Jefferies Investor Conferences - May 23rd, 2024
- NANOBIOTIX to Present at the Jefferies Global Healthcare Conference - May 23rd, 2024
- Replimune to Present at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Evaxion to Present New Positive Data from Ongoing Phase 2 Study on Lead Vaccine Candidate EVX-01 at the American Society of Clinical Oncology Annual... - May 23rd, 2024
- Biology of stem cells: an overview - PMC - National Center for ... - March 26th, 2024
- Iron Limitation Preserves Youthfulness of Blood Stem Cells - Mirage News - March 13th, 2024
- Mini organs grown from stem cells of unborn babies for the first time in breakthrough - The Mirror - March 9th, 2024
- The Effect of Short-Term NAD3 Supplementation on Circulating Adult Stem Cells in Healthy Individuals Aged 40-70 ... - Cureus - March 7th, 2024
- University of Liverpool Spin-Out Emerges, Pioneering Novel Adult Stem Cell-Based Therapies - India Education Diary - March 7th, 2024
- Scientists have used cells from fluid drawn during pregnancy to grow mini lungs and other organs - Yahoo News Canada - March 6th, 2024
- Japan approves new stem cell-based Alzheimer's therapy By Proactive Investors - Investing.com Australia - January 20th, 2024
- Cyberstalking pits Harvard professor against PubPeer Retraction ... - Retraction Watch - December 5th, 2023
- 10 functional health predictions for 2024, according to a doctor and ... - 1330 WFIN - December 5th, 2023
- See the Brain Like Never Before in This Gorgeous Art - Scientific American - December 5th, 2023
- Geron Announces Publication in The Lancet of Results from the ... - BioSpace - December 5th, 2023
- Stem cell injections could be the key to curing MS - Freethink - December 3rd, 2023
- Jaypirca (pirtobrutinib) Now Approved by U.S. FDA for the ... - Investors | Eli Lilly and Company - December 3rd, 2023
- Comparative Efficacy and Safety of Four JAK Inhibitors for ... - HealthDay - December 3rd, 2023
- City lights up for Francis on Anthony Nolan's birthday - Liverpool Express - December 3rd, 2023
Recent Comments