12 Jun 2020
Rare variants in TREM2 and PLCG2 influence a persons odds of developing Alzheimers disease, but that is far from all the two genes have in common. According to a study published June 8 in Nature Neuroscience, phospholipase C 2 acts downstream of TREM2 in a signaling pathway that supports critical microglial functions. Using human microglia derived from induced pluripotent stem cells, researchers led by Joseph Lewcock at Denali Therapeutics in South San Francisco reported that knocking out either gene product prevented the immune cells from efficiently processing lipids and neuronal debris. The researchers also found that, independently of TREM2, PLC2 is involved in a pro-inflammatory side hustle dictated by toll-like receptors, which, it so happens, is exacerbated by intracellular lipid build-up. Taken together, the findings strongly implicate faulty microglial lipid handling in the etiology of AD, and support therapeutic strategies that aim to rev up TREM2 signaling.
Using an impressive array of experimental conditions in gene-edited iPSC-microglia, [the authors] demonstrate that PLC2 is a downstream effector of TREM2 and a regulator of lipid metabolism. This exciting discovery directly connects PLC2 to well-established AD pathways involving APOE, TREM2, and microglial activation, commented Rik van der Kant, Vrije University, Amsterdam (full comment below). Florent Ginhoux of the Agency for Science, Technology and Research in Singapore, agreed. The study elegantly links TREM2 and PLC2 signaling pathways, and offers mechanistic insight into how variants in these genes affect the pathophysiology of AD, Ginhoux wrote (full comment below).
Double Dealing. When triggered by TREM2, PLC2 supports lipid metabolism and survival (left). When triggered by TLRs, PLC2 triggers inflammation. In TREM2 KO microglia (right), lipids accumulate and this exacerbates the pro-inflammatory, TLR-driven pathway. [Courtesy of Andreone et al., Nature Neuroscience, 2020.]
Since the discovery, in 2012, that rare variants in the coding region of TREM2 triple the risk of AD, researchers have pegged the receptor as supporting myriad microglial functions, including phagocytosis, walling off A plaques, and promoting an anti-inflammatory, neuroprotective environment (May 2016 news; Apr 2017 conference news;Jul 2018 conference news).
Separately, researchers discovered a rare variant in phospholipase C 2 (PLCG2) that protects against AD (Aug 2017 conference news on Sims et al., 2017). PLCs are a large family of intracellular enzymes that cleave the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3), a process that facilitates calcium signaling. In the brain, the 2 isoform is predominantly expressed by microglia, and initial studies suggest that the protective variant munches phospholipids with more gusto than the common one does (Zhang et al., 2014; May 2019 news).
Might the functions of TREM2 and PLC2 intersect in microglia? To study this question, co-first authors Benjamin Andreone and Laralynne Przybyla derived human microglia. They wove together elements from three recently developed protocols to coax so-called induced microglia (iMGs) from induced pluripotent stem cells (Muffat et al., 2016; Pandya et al., 2017; McQuade et al., 2018). They then used CRISPR to wipe out expression of TREM2 or PLCG2 in these cell-based models.
Under normal conditions, iMGs missing either TREM2 or PLCG2 appeared healthy and viable. When the going got toughi.e., when growth factors were depleted from the culture mediaboth types of knockout suffered a similar fate, dying sooner than their wild-type counterparts. The transcriptomes of each of the two iMG knockouts also differed from those of wild-type cells in similar ways. Specifically, half of the genes differentially expressed in TREM2 KO iMGs were similarly affected in PLCG KO iMGs. These common genes were part of signal transduction pathways downstream of DAP12, the adaptor protein that mediates TREM2 signaling. Using biochemical approaches, the researchers ultimately pieced together a signaling cascade by which lipids activate TREM2, leading to the phosphorylation of Syk2, which directly interacts with PLC2, unleashing its phospholipase activity and downstream signaling events.
Disabling the pathway, either by knocking out TREM2 or PLC2, had a dramatic impact on the processing of lipids, including cholesterol-laden myelin. All microglial lines in this study readily engulfed this type of fluorescently labeled debris; however, while wild-type cells had largely disposed of it after four days, TREM2 or PLCG2 knockouts were still chock-full of it by then. Tellingly, perhaps, the knockout cells failed to ramp up expression of several lipid processing genes in response to the myelin challenge.
Choking on Lipids? Wild-type microglia (left) readily digested lipids after treatment with myelin, while microglia lacking PLCG2 (middle) and TREM2 (right) accumulated the lipids. [Courtesy of Andreone et al., Nature Neuroscience, 2020.]
Lipidomics experiments revealed that the knockouts became burdened with a backlog of several subtypes of unprocessed lipid, including free cholesterol, cholesteryl esters, and myelin-derived ceramides. Similarly, in co-culture experiments with iPSC-derived neurons, both types of microglial knockout were unable to properly digest detritus from injured axons.
How might AD risk variants shift these phenotypes? The researchers generated iMGs that expressed the R47H variant of TREM2, or the protective P522R variant of PLCG2. As might be expected from prior findings on these variants, the R47H-TREM2 iMGs processed lipids more sluggishly than wild-type, whereas the P522R-PLCG2 microglia more deftly disposed of them than wild-type. Together, the findings support the idea that TREM2 and PLCG2 variants influence AD risk via lipid metabolism.
Lest a reader be tempted to tie a neat little bow on this set of results, here comes the twist: PLC2 also takes marching orders from toll-like receptors. This was previously reported in peripheral immune cells. The Denali researchers found the same in iMGs, as PLCG2 knockouts failed to mount a pro-inflammatory response to the TLR2 ligand zymosan.
Interestingly, the same pro-inflammatory cytokines that were down in response to zymosan in PLCG2 knockout iMGs were up in TREM2 knockout iMGs. For example, compared with wild-type iMGs treated with zymosan, PLCG2 knockouts secreted 50 percent less IL-1, while TREM2 knockouts secreted 64 percent more.
The same pattern emerged when the researchers used the TLR4 ligand LPS to trigger the microglial NLRP3 inflammasome, which itself has been tied to AD (Nov 2019 news). Loading up the microglia with myelin prior to triggering the inflammasome dramatically enhanced the inflammatory response in TREM2 KO iMGs, the scientists report. This implies that intracellular lipid accumulation may exacerbate damaging inflammatory pathways. The findings dovetail with those of a recent study that tied lipid droplet-accumulating microglia (LAM) in the aging hippocampus to neuroinflammation (Aug 2019 news).
Overall, the findings cast PLC2 as a two-faced player in microglia. When triggered via TREM2, this phospholipase facilitates processing of lipids and microglial survival. When tripped off by TLRs, it ramps up potentially damaging pro-inflammatory responses. And when lipids build up, as might occur in the aging brain, they exacerbate the pro-inflammatory pathway, Andreone told Alzforum. He believes the balance between these two PLC2 signaling pathways could dictate whether microglia help or harm.
The findings lend support to a therapeutic strategy of agonizing TREM2 signaling, Lewcock told Alzforum. That the protective PLC2 variant enhances lipid processing in microglia fits with the idea that even people whose TREM2 functions normally could stand to benefit from a boost in this pathway. Activating PLC2 is also a potential strategy, Lewcock said, although it would come with the risk of rousing its pro-inflammatory side. More work is needed to dissect how the PLC2 protective variant influences signaling downstream of TREM2 versus TLRs.
This is a very important paper, wrote Christian Haass at the German Center for Neurodegenerative Diseases in Munich. Haass noted that its findings fit with fresh data from his and other groups, but also cautioned that the molecular signature of a protective subpopulation of microglia needs to be defined in much greater detail (full comment below).
Denali is collaborating with Haass group to develop an activating antibody for TREM2, which will come with a blood-brain barrier transport vehicle to shuttle it into the brain (May 2019 conference news;May 2020 news).AL002, a TREM2-activating antibody developed by Alector and Abbvie, entered early clinical trials last year (see clinicaltrials.gov).Jessica Shugart
No Available Further Reading
More here:
Janus-Faced PLC2? Alzheimer's Risk Protein Toggles TREM2 and TLR Pathways - Alzforum
- Catapulting Stem Cell Research into the Future: Innovation and Global Impact at ISSCR 2025 in Hong Kong - geneonline - January 9th, 2025
- Stem cell transplant research breakthrough gives hope to those with blood cancer - University of Birmingham - November 29th, 2024
- Accelerating stem cell research - The University of British Columbia - November 22nd, 2024
- ISSCR Guidelines for Stem Cell Research and Clinical ... - PubMed - October 18th, 2024
- Induced pluripotent stem cell-derived mesenchymal stem cells: whether ... - October 18th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - October 8th, 2024
- New Facility Will Expand UC Merced's Groundbreaking Stem Cell Research - University of California, Merced - October 2nd, 2024
- Cell and Gene Therapy Research To Benefit From New Stem Cell Collection Center - Technology Networks - September 26th, 2024
- Scientists in Madison studying synthetic materials with applications in stem cell research - Wisbusiness.com - September 26th, 2024
- OpRegen (RG6501) Phase 1/2a Results to Be Featured at International Society for Stem Cell Research (ISSCR) 2024 Copenhagen International Symposium -... - September 26th, 2024
- Stem Cell Therapy Research: Creative Biolabs Advances iPSC-Derived Macrophage Solutions - openPR - September 20th, 2024
- Stem Cell Research About Stem Cells - September 20th, 2024
- $34 million for research into stem cell therapies for osteoarthritis and other conditions - BioMelbourne Network - September 18th, 2024
- $55 million for stem cell therapies, data infrastructure and research into rheumatoid arthritis - Department of Health - September 10th, 2024
- Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth - Nature.com - August 24th, 2024
- Stem Cell Therapy Market is expected to generate a revenue of USD 31.41 Billion by 2030, Globally, at 13.95% CAGR: Verified Market Research -... - August 16th, 2024
- Stem Cell Therapy Market is expected to generate a revenue of USD 31.41 Billion by 2030, Globally, at 13.95% CAGR: Verified Market Research - PR... - August 12th, 2024
- Advanced Parkinsons in a dish model accelerates research Harvard ... - August 10th, 2024
- Understanding Stem Cell Research | UCLA BSCRC - August 6th, 2024
- TREEFROG THERAPEUTICS PARTICIPATES IN AN INNOVATION SHOWCASE & POSTER SESSION AT THE INTERNATIONAL SOCIETY FOR STEM CELL RESEARCH (ISSCR) ANNUAL... - July 12th, 2024
- Familiar face to take over as CEO of California's stem cell research funding agency - The Business Journals - July 12th, 2024
- Factor Bioscience to Deliver Six Presentations at the International Society for Stem Cell Research (ISSCR) 2024 Annual Meeting - The Malaysian Reserve - July 12th, 2024
- Research harnesses machine learning and imaging to give insight into stem cell behavior - Medical Xpress - July 5th, 2024
- Stem Cell Research Uncovers Clues to Tissue Repair That Could Help Heal the Uterus and More - Yale School of Medicine - May 29th, 2024
- Theradaptive Secures Landmark Funding from Maryland Stem Cell Research Fund (MSCRF) to Support Human ... - PR Newswire - May 27th, 2024
- Unparalleled Research on Adipose Tissue-Derived Stem Cell Therapy Market With Current and Future Growth ... - openPR - May 15th, 2024
- 100 plus years of stem cell research20 years of ISSCR - PMC - March 26th, 2024
- Stem Cell Science and Human Research Studies Ahead of Cargo Arrival - NASA Blogs - February 18th, 2024
- Stem cell research project to launch into space - Fox Weather - January 24th, 2024
- Breakthrough in cancer research opening up stem cell therapy to more people. How you can get involved - 69News WFMZ-TV - January 20th, 2024
- Stem Cell Research Heading to the ISS on Axiom Mission 3 - ISS National Lab - January 18th, 2024
- No, Rep. Steve Scalise Didn't Vote Against Stem Cell Research From Which He Is Now Benefiting - The Dispatch - January 12th, 2024
- Applications are open for the Maryland Stem Cell Research Fund - Technical.ly - January 4th, 2024
- Global Stem Cell Therapy Market to Reach USD 928.6 Million by 2031: Says Allied Market Research - Yahoo Finance - November 19th, 2023
- Current state of stem cell-based therapies: an overview - PMC - November 3rd, 2023
- Dynamic Stem Cell Therapy Uncovers Research in Advance Regenrative Medicine - Yahoo Finance - November 3rd, 2023
- Research Fellow (Aging and Cancer Stem Cell Laboratory ... - Times Higher Education - October 15th, 2023
- Qkine Collaborates with the Cambridge Stem Cell Institute to Facilitate Same-Day Access to Key Research Products for Researchers at the Cambridge... - September 27th, 2023
- Stem cells: a comprehensive review of origins and emerging clinical ... - September 25th, 2023
- Stem Cell Research and Communicating Science | GBH - GBH News - September 20th, 2023
- Stem cell research reveals the earliest stages of a human life - SBS News - September 10th, 2023
- Stem Cell Therapy Market Size 2023 | Innovative Research Methodologies with Emerging Trends and Opportuni - Benzinga - September 10th, 2023
- Autologous Stem Cell and Non-Stem Cell Based Therapies Market Research, Current Trends, Key Industry Play - Benzinga - September 8th, 2023
- Stem Cell Therapy Market 2023 Business Statistics and Research ... - The Knox Student - August 28th, 2023
- Autologous Stem Cell Based Therapies Market Analysis, Research ... - Chatfield News-Record - July 19th, 2023
- Global Stem Cell Market Projected to Reach $14 Bn by 2028: Ken Research - Yahoo Finance - July 11th, 2023
- Theradaptive Awarded Manufacturing Assistance Grant by the Maryland Stem Cell Research Fund - Benzinga - July 10th, 2023
- Bionano Announces Presentation of OGM Utility Across Stem Cell Therapy Applications at the International Society for Stem Cell Research (ISSCR) Annual... - June 19th, 2023
- Sana Biotechnology Highlights Preclinical Data from Hypoimmune and Fusogen Platforms at the International Society for Stem Cell Research (ISSCR) 2023... - June 17th, 2023
- Induced Pluripotent Stem Cell (iPSC) Global Market Report 2023: Effective Research Programs Hold Key in Roll Out of Advanced iPSC Treatments - Yahoo... - June 17th, 2023
- Lung and heart stem cell research paves way for new COVID-19 treatments - Medical Xpress - June 14th, 2023
- Toxicology PhD student cultivating giant leaps in stem cell research ... - June 4th, 2023
- Harvard Stem Cell Institute (HSCI) - May 26th, 2023
- Findings may lead to improved insulin-secreting cells derived from stem ... - May 26th, 2023
- Cell Press: Stem Cell Reports - May 26th, 2023
- Stem cell research could enable blood to be made in other parts of the body - Medical Xpress - May 26th, 2023
- Construction of myocardial patch with mesenchymal stem cells and poly ... - May 22nd, 2023
- Cedars-Sinai to Send Stem Cells to the Space Station to Aid in the ... - May 22nd, 2023
- researchers expand human blood stem cells | Institute for Stem Cell ... - May 22nd, 2023
- A Look Inside Stem Cells Helps Create Personalized Regenerative ... - May 17th, 2023
- Exclusive Research Report on Msenchymal Stem Cell and Exosome Diagnostics and Therapies Market to Witness Comp - openPR - May 17th, 2023
- The Future of Stem Cell Research: Master of Science in ... - The Daily | Case Western Reserve University - May 10th, 2023
- Exclusive Research Report on Stem Cell Therapy for Diabetes and ... - Digital Journal - May 9th, 2023
- Aging melanocyte stem cells and gray hair | National Institutes of ... - May 5th, 2023
- Mouse hair turns gray when certain stem cells get stuck - May 5th, 2023
- Science-First Skincare Company Michal Morrison Secures Exclusive World-Wide License of Proprietary STEM6 Molecule, Supported by Over 25 Years of... - May 5th, 2023
- BioCentriq and panCELLa execute research agreement to study stem cell-derived Natural Killer cell expansi - Benzinga - May 3rd, 2023
- Hair turning gray? Study finds a stem cell 'glitch' may be the cause - May 1st, 2023
- Elevai Labs Announces Research Grant Award and Partnership to Better Characterize the 'Payload' of ELEVAI's Stem Cell-derived Exosomes - Yahoo Finance - April 27th, 2023
- Why does hair turn gray? A new study says 'stuck' stem cells may ... - NPR - April 27th, 2023
- Study advances understanding of how melanocyte stem cells work to color ... - April 21st, 2023
- Stem cell research and therapy legislation to be replaced, says ... - Bahamas Tribune - April 21st, 2023
- Stem Cell Research (journal) - Wikipedia - April 21st, 2023
- Scientists Are About to Try to Create Stem Cells in Space - April 21st, 2023
- Stem Cell Research & Therapy | Articles - BioMed Central - April 16th, 2023
- Stem Cell Junk Yards Reveal a New Clue About Aging | WIRED - April 16th, 2023
- Global Stem Cells Market Research Report 2023: Implications - April 16th, 2023
- Stem cell research can help people with hard- | EurekAlert! - April 16th, 2023
- University Of Edinburgh's stem cell research gets funding boost - India Education Diary - April 14th, 2023
Recent Comments