Scientists have created millions of human cells in mouse embryos, in a technique which they hope could one day be used in a variety of ways, from growing organs for life-saving transplants to finding treatments for diseases including COVID-19.
The study centred around what are known as stem cells, which can grow into many different types of cells. Researchers at the State University of New York at Buffalo and Roswell Park Cancer Institute injected 10 to 12 human stem cells into 3.5-day-old mouse embryos.
After 17 days, millions of human cells formed in 10 mouse embryos. They included eye, liver, and red blood cells, which each represent one of the three types of cells we are made up of. The human cells accounted for between 0.1 to 4 percent of the cells in 14 of the mouse embryos, creating a chimera.
Professor Jian Feng of the Jacobs School of Medicine and Biomedical Sciences at State University of New York at Buffalo who co-authored the study published in Science Advances, told Newsweek: "This will enable the generation of human cells, tissues or even organs in animals."
Feng said he was most surprised that his team were able to produce lots of human red blood cells for reasons that are unclear. This shows that the human stem cells developed faster in the mouse embryos, as such cells would not be found in a human embryo until after about seven to eight weeks, he explained.
The study also showed how the team were able to turn stem cells from a primed to nave state in order to grow the different cells. While nave cells aren't on track to become a specific type of cell, primed stem cells are on the path to developing into a specific type of cell.
They did this by inhibiting an enzyme in primed human stem cells for three hours. This enabled the newly nave human stem cells to grow with nave mouse cells in the embryos. The technique previously used to create nave human stem cells wasn't able to create human cells of different types in mouse embryos.
Feng said the technique could be used to produce mice which are better models of human diseases, "particularly infectious diseases that specifically or preferentially impact human, e.g., COVID-19.
"It is possible to make human immune cells or cells of the respiratory system in a mouse with this technology. Such chimeric mice would be very useful for studying COVID-19, which gravely impacts humans, not barely affects mice."
The method could also be used to generate organs in large farm animals, like pigs, for organ transplants in humans. But the approach would need to be significantly developed to translate what the team found in mice to large animals such as pigs, according to Feng.
"There are lots of hurdles to go through before it can be done. The human organs need to be free of pig cells. This would be very hard. One potential pathway is to understand how it works in a chimeric pig and try to develop an artificial system to grow human organs. If this can be realized, many patients who are waiting for organ transplant will be saved."
However, Feng acknowledged: "There are lots of things that we do not understand. More research is needed to understand how exactly human stem cells develop in a mouse embryo, whether it is possible to make even more human cells of a particular kind, for example, so the chimera can be used to study diseases or provide cells for transplantation. It is still at the early stage of this field."
Read more
Deborah Gumucio, Professor Emerita of the Department of Cell and Developmental Biology and Department of Internal Medicine at University of Michigan Medical School, who did not work on the project, told Newsweek: "This study's major advance is the establishment of culture conditions that permit the relatively (compared to previous studies) robust contribution of human embryonic stem cells to multiple organs/tissues in intact mouse embryos.
"This could eventually permit the study of human cells in the context of fully functioning organs, thereby offering real potential for new and exciting scientific exploration.
"A very surprising aspect to me was the amazing speed with which the human red cells and photoreceptors developed in the context of the mouse embryo. Of course, the functional properties of these human cells have yet to be examined.
"It makes one wonder, if we were to increase the amount of chimerism (maximally 4 percent in this study), would the developmental properties of the cells resemble those seen in mouse or human?" said Gumucio.
Although the work is an important proof of concept, Gumucio said: "In any groundbreaking study like this, tremendous potential sits side-by-side with limitations and questions that must be answered with further research.
"Here, the authors were able to achieve 0.14 to 4 percent chimerism. This might be enough to study the properties/behavior of the human cells in their new murine [mouse] homes, but, since we know that much of cell behavior is directed by cell to cell communication, will these cells behave like human cells or mouse cells?
"Certainly, the speed-up in development mentioned above suggests that the mouse environment does in fact affect human cellular development. Whether it also affects cell function will need to be further explored in each tissue/organ context."
Noa Novershtern of the Department of Molecular Genetics at the Weizmann Institute of Science, Israel, who didn't work on the study, told Newsweek: "As always, such exciting findings need to be repeated and confirmed by other labs. In addition, there is still a need to test carefully whether the human cells gained the function of the mouse tissue they reside in, as there is a possibility that they populate the embryo but do not function correctly."
More here:
Millions of Human Cells Have Been Grown Inside Mice Embryos - Newsweek
- Ageing of stem cells reduces their capacity to form tumours - Nature.com - December 5th, 2024
- Genes Older Than Animal Life Itself Were Inserted Into Mice. Here's What Happened. - ScienceAlert - December 5th, 2024
- DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells -... - November 29th, 2024
- Report calls for legislation to bolster governance of stem cell-based embryo models - Durham University - November 29th, 2024
- Researchers shed new light on role of DNA in human development - Kalinga TV - November 26th, 2024
- SCIENCE NOTEBOOK | Good News About Hole in the Antarctics Ozone Layer, and New Hope for Patients with LSCD - Frontline - November 26th, 2024
- What Stem Cell Treatments Canand CantDo - AOL - November 22nd, 2024
- Human embryonic stem cells: Derivation, culture, and differentiation: A ... - November 22nd, 2024
- Gain of 1q confers an MDM4-driven growth advantage to undifferentiated and differentiating hESC while altering their differentiation capacity -... - November 22nd, 2024
- From head to tail: How cells can behave autonomously during early development - Phys.org - November 20th, 2024
- Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells - Nature.com - November 18th, 2024
- The emergence of Sox and POU transcription factors predates the origins of animal stem cells - Nature.com - November 18th, 2024
- Genes of ancient animal relatives used to grow a mouse: Study reveals hidden history of stem cells - Phys.org - November 18th, 2024
- MD Anderson Cancer Center unveils cell therapy research institute that will work with biotech, pharma - Fierce Biotech - November 12th, 2024
- Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys - Nature.com - November 10th, 2024
- Embryonic stem cells - PMC - November 8th, 2024
- Thermo Fisher and Novo Nordisk Foundation Cellerator Unite to Revolutionize Cell Therapy Manufacturing - Healthcare Digital - November 8th, 2024
- RMS Sponsors the 5th Summit on Stem Cell Derived Islets - The Manila Times - October 30th, 2024
- Differentiation fate of a stem-like CD4 T cell controls immunity to cancer - Nature.com - October 30th, 2024
- Self-organization of stem cells into embryos: A window on early ... - October 24th, 2024
- Stemness and ROS: Redox Signaling and Regulation in Stem Cell Biology - Frontiers - October 24th, 2024
- Now its getting bloody in cardiac organoids - Nature.com - October 18th, 2024
- Embryonic stem cells - PMC - National Center for Biotechnology Information - October 15th, 2024
- They Were Made Without Eggs or Sperm. Are They Human? - The Atlantic - October 15th, 2024
- A novel investigation of NANOG and POU5F1 associations in the pluripotent characterization of ES-like and epiblast cells - Nature.com - October 15th, 2024
- Researchers uncover new mechanism of stem cell differentiation linked to cancer progression - News-Medical.Net - October 14th, 2024
- Stem Cells to Reverse Diabetes, the Spread of Marburg Virus and Map of a Fruit Fly Brain - Scientific American - October 14th, 2024
- Stem Cells Market Expectation Surges with Rising Demand and Changing Trends - openPR - October 11th, 2024
- How close are we to perfecting synthetic stem cells? - The Mancunion - October 10th, 2024
- Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart - Nature.com - October 10th, 2024
- Revolutionary stem cell transplant successfully closes vision-threatening holes in the eye - Study Finds - October 4th, 2024
- Early human development and stem cell-based human embryo models - October 4th, 2024
- No partner, no problem: How people in the future might be able to have children with themselves - RNZ - October 4th, 2024
- Californias Billion-Dollar Stem Cell Initiatives End In Failure OpEd - Eurasia Review - October 4th, 2024
- The Future Of Stem Cell Therapy With Dr Adeel Khan - Style Magazines - October 4th, 2024
- New Study Mapping Stem Cells Reveals Molecular Choreography Behind ... - September 30th, 2024
- Stem Cell Research at Johns Hopkins Institute of Basic Biomedical ... - September 30th, 2024
- Zack Wang , PhD - Hopkins Medicine - September 30th, 2024
- Jennifer Hartt Elisseeff , PhD - Hopkins Medicine - September 30th, 2024
- Dr. Elias Zambidis, MD, PhD - Baltimore, MD - Pediatric Cellular ... - September 30th, 2024
- Alan David Friedman , MD - Hopkins Medicine - September 30th, 2024
- Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research - Nature.com - September 30th, 2024
- Human Embryonic Stem Cells Market Insights and Growth Trends: Leading Players and Future Projections to 2031 - WhaTech - September 26th, 2024
- Zac Efron says stem cell therapy helped him heal from The Iron Claw injuries - Daily Mail - September 25th, 2024
- The Role of Stem Cell Therapy in the Future of Personalized Medicine - HIT Consultant - September 25th, 2024
- Stem Cell Therapy Market to Exceed $831.9 Million by 2032 with 17.2% CAGR Growth - openPR - September 14th, 2024
- Brain Builders: How Stem Cell Research Is Rewriting the Genetic Code of Mental Health - SciTechDaily - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 10th, 2024
- Alive and Kicking: Watch this space on controversy-free stem-cell ... - September 8th, 2024
- After 25 years of hype, embryonic stem cells still don't cure for ... - September 8th, 2024
- Human embryonic stem cells: origin, properties and applications - September 8th, 2024
- Livestock embryonic stem cells for reproductive biotechniques and ... - September 8th, 2024
- Marinexcell: Our Vision Is To Create a Sustainable and Reliable Source of Seafood Products - vegconomist - the vegan business magazine - September 6th, 2024
- How cells enter the germline at the right time and place during embryonic development - MRC Laboratory of Molecular Biology - September 6th, 2024
- Diabetes took over her life, until a stem cell therapy freed her - redlakenationnews.com - August 31st, 2024
- Diabetes took over her life, until a stem cell therapy freed her - The Washington Post - August 27th, 2024
- New way to extend shelf life of blood stem cells will improve gene therapy - University of Cambridge news - August 20th, 2024
- The anti-aging tech guy is now shooting $25,000 worth of stem cells into his knees. Here's why - Quartz - August 16th, 2024
- Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety - Nature.com - August 12th, 2024
- Delivery of stem cell therapy for Parkinsons safe in primate trial - Parkinson's News Today - August 2nd, 2024
- Entero Therapeutics’ Chairman and CEO James Sapirstein Provides Business Update with Focus on Latiglutenase Development Program - July 31st, 2024
- Atea Pharmaceuticals to Host Second Quarter 2024 Financial Results Conference Call on August 7, 2024 - July 31st, 2024
- Amarin Reports Second Quarter 2024 Financial Results and Provides Business Update - July 31st, 2024
- PolyPid to Report Second Quarter 2024 Financial Results and Operational Highlights on August 14, 2024 - July 31st, 2024
- Kymera Therapeutics to Report Second Quarter 2024 Financial Results on August 7 - July 31st, 2024
- Fulcrum Therapeutics Announces Recent Business Highlights and Financial Results for Second Quarter 2024 - July 31st, 2024
- Paratek Pharmaceuticals Completes Five-Year Microbiologic Surveillance Study of NUZYRA® (omadacycline) Demonstrating No Change in In Vitro Potency... - July 31st, 2024
- Ocular Therapeutix™ to Report Second Quarter 2024 Financial Results on August 7, 2024 - July 31st, 2024
- Appendix 4C – Q4 FY24 Quarterly Cash Flow Report - July 31st, 2024
- Regeneron Announces the 2024 Winners of the Regeneron Prize for Creative Innovation - July 31st, 2024
- Clearmind Medicine Concludes the Successful Participation in the Psychedelic Medicine – Israel 2024 Conference: Presented Industry Leaders its... - July 31st, 2024
- Milestone® Pharmaceuticals to Present at the Upcoming BTIG Virtual Biotechnology Conference - July 31st, 2024
- Fate Therapeutics Appoints Neely Mozaffarian, MD, PhD, FACR, to its Board of Directors - July 31st, 2024
- electroCore to Announce Second Quarter June 30, 2024 Financial Results on Wednesday, August 7, 2024 - July 31st, 2024
- GigaGen Receives FDA Clearance of IND Application for Phase 1 Trial of Recombinant Polyclonal for HBV Treatment, GIGA-2339 - July 31st, 2024
- New Study: These Bizarre Blood-Sucking Fish Have a Jaw-Dropping Evolutionary Origin - SciTechDaily - July 30th, 2024
- Surgeon Turns to Stem Cells to Help Treat Autism and Immune Disorders - The Well News - July 22nd, 2024
- Study identifies epigenetic 'switches' that regulate the developmental trajectories of single cells - Medical Xpress - July 22nd, 2024
- German Man Likely 'Cured' of HIV With Stem Cell Therapy - Times Now - July 22nd, 2024
- CervoMed to Participate in the Emerging Growth Conference - July 18th, 2024
Recent Comments