An adult stem cell is thought to be an undifferentiated cell, found among differentiated cells in a tissue or organ. The adult stem cell can renew itself and can differentiate to yield some or all of the major specialized cell types of the tissue or organ. The primary roles of adult stem cells in a living organism are to maintain and repair the tissue in which they are found. Scientists also use the term somatic stem cell instead of adult stem cell, where somatic refers to cells of the body (not the germ cells, sperm or eggs). Unlike embryonic stem cells, which are defined by their origin (cells from the preimplantation-stage embryo), the origin of adult stem cells in some mature tissues is still under investigation.
Research on adult stem cells has generated a great deal of excitement. Scientists have found adult stem cells in many more tissues than they once thought possible. This finding has led researchers and clinicians to ask whether adult stem cells could be used for transplants. In fact, adult hematopoietic, or blood-forming, stem cells from bone marrow have been used in transplants for more than 40 years. Scientists now have evidence that stem cells exist in the brain and the heart, two locations where adult stem cells were not at firstexpected to reside. If the differentiation of adult stem cells can be controlled in the laboratory, these cells may become the basis of transplantation-based therapies.
The history of research on adult stem cells began more than 60 years ago. In the 1950s, researchers discovered that the bone marrow contains at least two kinds of stem cells. One population, called hematopoietic stem cells, forms all the types of blood cells in the body. A second population, called bone marrow stromal stem cells (also called mesenchymal stem cells, or skeletal stem cells by some), were discovered a few years later. These non-hematopoietic stem cells make up a small proportion of the stromal cell population in the bone marrow and can generate bone, cartilage, and fat cells that support the formation of blood and fibrous connective tissue.
In the 1960s, scientists who were studying rats discovered two regions of the brain that contained dividing cells that ultimately become nerve cells. Despite these reports, most scientists believed that the adult brain could not generate new nerve cells. It was not until the 1990s that scientists agreed that the adult brain does contain stem cells that are able to generate the brain's three major cell typesastrocytes and oligodendrocytes, which are non-neuronal cells, and neurons, or nerve cells.
Adult stem cells have been identified in many organs and tissues, including brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, and testis. They are thought to reside in a specific area of each tissue (called a "stem cell niche"). In many tissues, current evidence suggests that some types of stem cells are pericytes, cells that compose the outermost layer of small blood vessels. Stem cells may remain quiescent (non-dividing) for long periods of time until they are activated by a normal need for more cells to maintain tissues, or by disease or tissue injury.
Typically, there is a very small number of stem cells in each tissue and, once removed from the body, their capacity to divide is limited, making generation of large quantities of stem cells difficult. Scientists in many laboratories are trying to find better ways to grow large quantities of adult stem cells in cell culture and to manipulate them to generate specific cell types so they can be used to treat injury or disease. Some examples of potential treatments include regenerating bone using cells derived from bone marrow stroma, developing insulin-producing cells for type1 diabetes, and repairing damaged heart muscle following a heart attack with cardiac muscle cells.
Scientists often use one or more of the following methods to identify adult stem cells: (1) label the cells in a living tissue with molecular markers and then determine the specialized cell types they generate; (2) remove the cells from a living animal, label them in cell culture, and transplant them back into another animal to determine whether the cells replace (or "repopulate") their tissue of origin.
Importantly, scientists must demonstrate that a single adult stem cell can generate a line of genetically identical cells that then gives rise to all the appropriate differentiated cell types of the tissue. To confirm experimentally that a putative adult stem cell is indeed a stem cell, scientists tend to show either that the cell can give rise to these genetically identical cells in culture, and/or that a purified population of these candidate stem cells can repopulate or reform the tissue after transplant into an animal.
As indicated above, scientists have reported that adult stem cells occur in many tissues and that they enter normal differentiation pathways to form the specialized cell types of the tissue in which they reside.
Normal differentiation pathways of adult stem cells. In a living animal, adult stem cells are available to divide for a long period, when needed, and can give rise to mature cell types that have characteristic shapes and specialized structures and functions of a particular tissue. The following are examples of differentiation pathways of adult stem cells (Figure 2) that have been demonstrated in vitro or in vivo.
Figure 2. Hematopoietic and stromal stem cell differentiation. Click here for larger image. ( 2008 Terese Winslow)
Transdifferentiation. A number of experiments have reported that certain adult stem cell types can differentiate into cell types seen in organs or tissues other than those expected from the cells' predicted lineage (i.e., brain stem cells that differentiate into blood cells or blood-forming cells that differentiate into cardiac muscle cells, and so forth). This reported phenomenon is called transdifferentiation.
Although isolated instances of transdifferentiation have been observed in some vertebrate species, whether this phenomenon actually occurs in humans is under debate by the scientific community. Instead of transdifferentiation, the observed instances may involve fusion of a donor cell with a recipient cell. Another possibility is that transplanted stem cells are secreting factors that encourage the recipient's own stem cells to begin the repair process. Even when transdifferentiation has been detected, only a very small percentage of cells undergo the process.
In a variation of transdifferentiation experiments, scientists have recently demonstrated that certain adult cell types can be "reprogrammed" into other cell types in vivo using a well-controlled process of genetic modification (see Section VI for a discussion of the principles of reprogramming). This strategy may offer a way to reprogram available cells into other cell types that have been lost or damaged due to disease. For example, one recent experiment shows how pancreatic beta cells, the insulin-producing cells that are lost or damaged in diabetes, could possibly be created by reprogramming other pancreatic cells. By "re-starting" expression of three critical beta cell genes in differentiated adult pancreatic exocrine cells, researchers were able to create beta cell-like cells that can secrete insulin. The reprogrammed cells were similar to beta cells in appearance, size, and shape; expressed genes characteristic of beta cells; and were able to partially restore blood sugar regulation in mice whose own beta cells had been chemically destroyed. While not transdifferentiation by definition, this method for reprogramming adult cells may be used as a model for directly reprogramming other adult cell types.
In addition to reprogramming cells to become a specific cell type, it is now possible to reprogram adult somatic cells to become like embryonic stem cells (induced pluripotent stem cells, iPSCs) through the introduction of embryonic genes. Thus, a source of cells can be generated that are specific to the donor, thereby increasing the chance of compatibility if such cells were to be used for tissue regeneration. However, like embryonic stem cells, determination of the methods by which iPSCs can be completely and reproducibly committed to appropriate cell lineages is still under investigation.
Many important questions about adult stem cells remain to be answered. They include:
Previous|IV. What are adult stem cells?|Next
Continued here:
Stem Cell Basics IV. | stemcells.nih.gov
- Hope Biosciences Research Foundation Authorized to Begin Phase II Clinical Trial in Stem Cell Therapy for Juvenile Idiopathic Arthritis - Business... - December 22nd, 2024
- What Are Stem Cells? Biomedical Beat Blog National Institute of ... - November 29th, 2024
- TVHS opens stem cell processing lab to expand biotherapies | VA Tennessee Valley health care | Veterans Affairs - Veterans Affairs - November 8th, 2024
- Understanding Mature Tissue or Organ Stem Cells and Their Clinical ... - November 8th, 2024
- Biology of stem cells: an overview - PMC - PubMed Central (PMC) - October 30th, 2024
- New government tech deals boost the business of cancer detection - GOV.UK - October 11th, 2024
- Stem cell therapy reverses type 1 diabetes in world first - Yahoo News UK - October 11th, 2024
- Advances in different adult stem cell-derived exosomal non-coding RNAs for the treatment of neurological disorders: a narrative review - Frontiers - September 26th, 2024
- Breakthrough technique may help speed understanding, treatment of MD, ALS - Harvard Gazette - September 14th, 2024
- Rostock University Explores Use of Stem Cells for Meat Cultivation with Help from Innocent Meat - vegconomist - the vegan business magazine - August 12th, 2024
- Entero Therapeutics’ Chairman and CEO James Sapirstein Provides Business Update with Focus on Latiglutenase Development Program - July 31st, 2024
- Atea Pharmaceuticals to Host Second Quarter 2024 Financial Results Conference Call on August 7, 2024 - July 31st, 2024
- Amarin Reports Second Quarter 2024 Financial Results and Provides Business Update - July 31st, 2024
- Fulcrum Therapeutics Announces Recent Business Highlights and Financial Results for Second Quarter 2024 - July 31st, 2024
- Ocular Therapeutix™ to Report Second Quarter 2024 Financial Results on August 7, 2024 - July 31st, 2024
- Kymera Therapeutics to Report Second Quarter 2024 Financial Results on August 7 - July 31st, 2024
- Paratek Pharmaceuticals Completes Five-Year Microbiologic Surveillance Study of NUZYRA® (omadacycline) Demonstrating No Change in In Vitro Potency... - July 31st, 2024
- Targeting the stem cell niche micro-environment as therapeutic strategies in aging - Frontiers - June 28th, 2024
- International trial introduces another curative option for sickle cell disease - EurekAlert - June 28th, 2024
- HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation - Frontiers - June 28th, 2024
- Avenue Therapeutics to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Intelligent Bio Solutions Broadens UK Customer Base by Securing Two Key Accounts with Over 70 Locations and Over 15,000 Employees in the Warehouse and... - June 21st, 2024
- Altamira Therapeutics Highlights Newly Published Review Article Supporting Use of Betahistine in Vertigo Management - June 21st, 2024
- Scilex Holding Company Partners with New National Distributor, Endeavor Distribution LLC. - June 21st, 2024
- Firefly Neuroscience, an AI-Driven Brain Health Company, Appoints Samer Kaba, MD as Chief Medical Officer - June 21st, 2024
- API and the University of Alberta Break Ground in Edmonton on Canada’s Largest Manufacturing Facility for Critical Medicines - June 21st, 2024
- Syntekabio Signs Memorandum of Understanding with bioSeedin/ACROBiosystems - June 21st, 2024
- Rapafusyn Pharmaceuticals Secures $28 Million Series A to Advance Its Non-Degrading Molecular Glue Drug Discovery Platform - June 21st, 2024
- Zealand Pharma announces positive topline results from the Phase 1b 16-week multiple ascending dose clinical trial with long-acting amylin analog... - June 21st, 2024
- Rakovina Therapeutics Announces Oversubscribed Private Placement and Results from 2024 Annual General Meeting - June 21st, 2024
- Cellectis Publishes a Scientific Article Unveiling Three Key Factors for Efficient TALE Base Editing - June 21st, 2024
- NextCure to Present at the H.C. Wainwright 5th Annual Neuro Perspectives Virtual Conference - June 21st, 2024
- Press Release: ISTH: Sanofi advances leadership in hemophilia with new data for ALTUVIIIO and fitusiran - June 21st, 2024
- Idorsia’s novel treatment for chronic insomnia wins the prestigious Prix Galien Suisse 2024 innovation award in the ‘Primary & Speciality’... - June 21st, 2024
- Radiopharm Receives Strategic Investment for up to A$18 million - June 21st, 2024
- Press Release: Audrey Duval Derveloy appointed Global Head of Corporate Affairs, member of Sanofi’s Executive Committee - June 21st, 2024
- Trading by management and close relations of management - June 21st, 2024
- Major shareholder announcement - June 21st, 2024
- Iovance Biotherapeutics Reports Inducement Grants under NASDAQ Listing Rule 5635(c)(4) - June 21st, 2024
- Nature retracts highly cited 2002 paper that claimed adult stem cells could become any type of cell - Retraction Watch - June 19th, 2024
- Shares of Biotech MicroCap Rip on Licensing Talks - The Globe and Mail - June 15th, 2024
- Syntekabio to Showcase Advanced AI Drug Discovery Technologies at BIO International Convention 2024 - May 23rd, 2024
- Vaxart, Inc. Reports Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) - May 23rd, 2024
- Zealand Pharma announces topline results from the mechanistic investigator-led DREAM trial with low doses of GLP-1/GLP-2 receptor dual agonist... - May 23rd, 2024
- Hornet Therapeutics emerges from stealth with data published in Science demonstrating the first potential drug intervention for Epstein-Barr Virus... - May 23rd, 2024
- Oxurion Announces Results on the Annual Shareholders’ Meeting of 16 May 2024 - May 23rd, 2024
- New York Blood Center Enterprises Celebrates the Expansion of Cell & Gene Therapy GMP Manufacturing Capabilities at the Grand Opening of... - May 23rd, 2024
- Syneos Health Leaders Recognized as PM360 ELITE 100 Award Recipients - May 23rd, 2024
- Kane Biotech Announces First Quarter 2024 Financial Results - May 23rd, 2024
- Beyond Air® Schedules Fiscal Year End 2024 Financial Results Conference Call and Webcast - May 23rd, 2024
- Supernus Announces Promising Interim Data from Ongoing Open-Label Phase 2a Study of SPN-817 in Epilepsy - May 23rd, 2024
- Harvard Bioscience, Inc. to Present at the Jefferies Global Healthcare Conference on June 5, 2024 - May 23rd, 2024
- 23andMe Reports Fourth Quarter and Full Year Fiscal 2024 Financial Results - May 23rd, 2024
- Genmab to Showcase Data in Various Patient Populations to be Presented at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Kymera Therapeutics to Present New Clinical Data from Ongoing Phase 1 Trial of MDM2 Degrader KT-253 at ASCO Annual Meeting - May 23rd, 2024
- Tizona Therapeutics Presents Phase 1b TTX-080 Clinical Data in Advanced Colorectal Cancer and Head and Neck Squamous Cell Carcinoma at ASCO 2024 - May 23rd, 2024
- Inotiv, Inc. to Participate in Upcoming Craig Hallum and Jefferies Investor Conferences - May 23rd, 2024
- NANOBIOTIX to Present at the Jefferies Global Healthcare Conference - May 23rd, 2024
- Replimune to Present at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 23rd, 2024
- Evaxion to Present New Positive Data from Ongoing Phase 2 Study on Lead Vaccine Candidate EVX-01 at the American Society of Clinical Oncology Annual... - May 23rd, 2024
- Biology of stem cells: an overview - PMC - National Center for ... - March 26th, 2024
- Iron Limitation Preserves Youthfulness of Blood Stem Cells - Mirage News - March 13th, 2024
- Mini organs grown from stem cells of unborn babies for the first time in breakthrough - The Mirror - March 9th, 2024
- The Effect of Short-Term NAD3 Supplementation on Circulating Adult Stem Cells in Healthy Individuals Aged 40-70 ... - Cureus - March 7th, 2024
- University of Liverpool Spin-Out Emerges, Pioneering Novel Adult Stem Cell-Based Therapies - India Education Diary - March 7th, 2024
- Scientists have used cells from fluid drawn during pregnancy to grow mini lungs and other organs - Yahoo News Canada - March 6th, 2024
- Japan approves new stem cell-based Alzheimer's therapy By Proactive Investors - Investing.com Australia - January 20th, 2024
- Cyberstalking pits Harvard professor against PubPeer Retraction ... - Retraction Watch - December 5th, 2023
- 10 functional health predictions for 2024, according to a doctor and ... - 1330 WFIN - December 5th, 2023
- See the Brain Like Never Before in This Gorgeous Art - Scientific American - December 5th, 2023
- Geron Announces Publication in The Lancet of Results from the ... - BioSpace - December 5th, 2023
- Stem cell injections could be the key to curing MS - Freethink - December 3rd, 2023
- Jaypirca (pirtobrutinib) Now Approved by U.S. FDA for the ... - Investors | Eli Lilly and Company - December 3rd, 2023
- Comparative Efficacy and Safety of Four JAK Inhibitors for ... - HealthDay - December 3rd, 2023
- City lights up for Francis on Anthony Nolan's birthday - Liverpool Express - December 3rd, 2023
- NOT-AR-23-022: Request for Information on Themes for the NIAMS ... - National Institutes of Health (.gov) - December 3rd, 2023
- December 2023: Intramural Papers of the Month - Environmental Factor Newsletter - December 1st, 2023
- CNA Explains: What is cord blood banking and why do parents do it? - CNA - December 1st, 2023
- Regulation of myogenesis and adipogenesis by the electromagnetic ... - Nature.com - December 1st, 2023
- The effects of vitamin K on bone health - News-Medical.Net - December 1st, 2023
Recent Comments