CRANFORD - Citius Pharmaceuticals, Inc. ('Citius' or the 'Company') (Nasdaq: CTXR), a specialty pharmaceutical company developing and commercializing critical care drug products, announced that it has signed an exclusive agreement with Novellus Therapeutics Limited ('Novellus') to license iPSC-derived mesenchymal stem cells (iMSCs), and has created a new subsidiary, NoveCite, that will be focused on developing cellular therapies.
NoveCite has a worldwide exclusive license from Novellus, an engineered cellular medicines company, to develop and commercialize NoveCite mesenchymal stem cells ('NC-iMSCs') to treat acute respiratory conditions with a near term focus on Acute Respiratory Distress Syndrome ('ARDS') associated with COVID-19. Several cell therapy companies using donor-derived MSC therapies in treating ARDS have demonstrated that MSCs reduce inflammation, enhance clearance of pathogens and stimulate tissue repair in the lungs. Almost all these positive results are from early clinical trials or under the emergency authorization program.
NC-iMSCs are the next generation mesenchymal stem cell therapy. They are believed to be differentiated and superior to donor-derived MSCs. Human donor-derived MSCs are sourced from human bone marrow, adipose tissue, placenta, umbilical tissue, etc. and have significant challenges (e.g., variable donor and tissue sources, limited supply, low potency, inefficient and expensive manufacturing). iMSCs overcome these challenges because they: Are more potent and secrete exponentially higher levels of immunomodulatory proteins; Have practically unlimited supply for high doses and repeat doses; Are from a single donor and clonal so they are economically produced at scale with consistent quality and potency, as well as being footprint free (compared to viral reprogramming methods) and Have significantly higher expansion capability.
Globally, there are 3 million cases of ARDS every year out of which approximately 200,000 cases are in the United States. The COVID-19 pandemic has added significantly to the number of ARDS cases. Once the COVID patients advance to ARDS, they are put on mechanical ventilators. Death rate among patients on ventilators can be as high as 50% depending on associated co-morbidities. There are no approved treatments for ARDS, and the current standard of care only attempts to provide symptomatic relief.
'NoveCite iMSCs have the potential to be a breakthrough in the field of cellular therapy for acute respiratory conditions because of the high potency seen in Novellus' pre-clinical studies, and because iMSCs are iPSC-derived, and therefore overcome the manufacturing challenges associated with donor derived cells,' said Myron Holubiak, Chief Executive Officer of Citius.
'We are excited to be part of this effort because of the promise to save lives and reduce long term sequelae in patients with devastating respiratory diseases such as ARDS caused by COVID-19,' said Dr. Matthew Angel, Chief Science Officer of Novellus. 'Our iMSC technology has multimodal immunomodulatory mechanisms of action that make it potentially promising therapy to treat acute respiratory diseases.'
About Citius Pharmaceuticals, Inc.
Citius is a late-stage specialty pharmaceutical company dedicated to the development and commercialization of critical care products, with a focus on anti-infectives and cancer care.
About Novellus, Therapeutics, Limited
Novellus is a pre-clinical stage biotechnology company developing engineered cellular medicines using its patented non-immunogenic mRNA high specificity gene editing, mutation-free & footprint-free cell reprogramming and serum insensitive mRNA lipid delivery technologies. Novellus is privately held and is headquartered in Cambridge, MA.
About NoveCite iMSC (NC-iMSC)
NoveCite's mesenchymal stem cell therapy product is derived from a human induced pluripotent stem cell (iPSC) line generated using a proprietary mRNA-based (non-viral) reprogramming process. The NC-iMSCs produced from this clonal technique are differentiated from human donor-derived MSCs (bone marrow, placenta, umbilical cord, adipose tissue, or dental pulp) by providing genetic homogeneity. In in-vitro studies, NC-iMSCs exhibit superior potency and high cell viability. NC-iMSCs secrete immunomodulatory proteins that may reduce or prevent pulmonary symptoms associated with acute respiratory distress syndrome (ARDS) in patients with COVID-19. NC-iMSC is an allogeneic (unrelated donor) mesenchymal stem-cell product manufactured by expanding material from a master cell bank.
First generation (human donor-derived) MSCs are isolated from donated tissue followed by 'culture expansion'. Since only a relatively small number of cells are isolated from each donation, first generation MSCs are increased by growing the cells in culture. Unfortunately, these type of MSCs start to lose potency, and ultimately become senescent. Each donation produces a limited number of MSCs, so a continuous supply of new donors is needed to produce commercial scale. The number and quality of MSCs that can be isolated from different donors can vary substantially.
About Acute Respiratory Distress Syndrome (ARDS)
ARDS is an inflammatory process leading to build-up of fluid in the lungs and respiratory failure. It can occur due to infection, trauma and inhalation of noxious substances. ARDS accounts for approximately 10% of all ICU admissions and almost 25% of patients requiring mechanical ventilation. Survivors of ARDS are often left with severe long-term illness and disability. ARDS is a frequent complication of patients with COVID-19. ARDS is sometimes initially diagnosed as pneumonia or pulmonary edema (fluid in the lungs from heart disease). Symptoms of ARDS include shortness of breath, rapid breathing and heart rate, chest pain (particularly while inhaling), and bluish skin coloration. Among those who survive ARDS, a decreased quality of life is relatively common.
Safe Harbor
This press release may contain 'forward-looking statements' within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Such statements are made based on our expectations and beliefs concerning future events impacting Citius. You can identify these statements by the fact that they use words such as 'will,' 'anticipate,' 'estimate,' 'expect,' 'should,' and 'may' and other words and terms of similar meaning or use of future dates. Forward-looking statements are based on management's current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock price. Factors that could cause actual results to differ materially from those currently anticipated are: the risks associated with developing the NoveCite technology as a treatment for ARDS; risks associated with developing any of our product candidates, including any licensed from Novellus, Inc., including that preclinical results may not be predictive of clinical results and our ability to file an IND for such candidates; our need for substantial additional funds; the estimated markets for our product candidates, including those for ARDS, and the acceptance thereof by any market; risks relating to the results of research and development activities; uncertainties relating to preclinical and clinical testing; the early stage of products under development, including the NoveCite technology; our ability to obtain, perform under and maintain licensing, financing and strategic agreements and relationships; our ability to attract, integrate, and retain key personnel; risks related to our growth strategy; our ability to identify, acquire, close and integrate product candidates and companies successfully and on a timely basis; government regulation; patent and intellectual property matters; competition; as well as other risks described in our SEC filings. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law.
Contact:
Andrew Scott
Tel: 908-967-6677
Email: ascott@citiuspharma.com
Read this article:
- Exploring mesenchymal stem cells homing mechanisms and ... - PubMed - November 26th, 2024
- Macrophage tracking with USPIO imaging and T2 mapping predicts immune rejection of transplanted stem cells - Nature.com - November 26th, 2024
- IL-10RA governor the expression of IDO in the instruction of lymphocyte immunity - Nature.com - November 26th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - November 26th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 25th, 2024
- Engineering bone/cartilage organoids: strategy, progress, and application - Nature.com - November 25th, 2024
- Proteomic analysis of human Whartons jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic... - November 20th, 2024
- Clinical outcomes of autologous adipose-derived mesenchymal stem cell combined with high tibial osteotomy for knee osteoarthritis are correlated with... - November 20th, 2024
- Mesenchymal stem cells lineage and their role in disease development - November 18th, 2024
- Mesenchymal Stem Cells - SpringerLink - November 18th, 2024
- Exosomes: The Insulin of Our Era? - University of Miami - November 18th, 2024
- Partner Perspectives: Mesenchymal Stromal Cells Could Serve as Preventive Therapy for Chronic Radiation-Induced Dry Mouth - OncLive - November 10th, 2024
- Skin-care founder Angela Caglia on the stem cell technology that created 437% sales growth: 'It's transformed the business' - Glossy - November 8th, 2024
- Substantial Overview on Mesenchymal Stem Cell Biological and Physical ... - November 8th, 2024
- Regenerative Medical Technology Group Announces the Opening of New Clinic in Dubai on November 23 - Newswire - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - StockTitan - November 8th, 2024
- Stem cell science is dominating the luxury skin-care market as human-derived ingredients become less taboo - Glossy - November 8th, 2024
- BioRestorative Therapies Receives Expanded Tissue License from New York State Department of Health - The Manila Times - November 8th, 2024
- SMART researchers develop a method to enhance effectiveness of cartilage repair therapy - MIT News - October 25th, 2024
- Biological functions of mesenchymal stem cells and clinical ... - October 24th, 2024
- Chemical-defined medium supporting the expansion of human mesenchymal ... - October 24th, 2024
- Mesenchymal Stem Cells: Time to Change the Name! - PMC - October 24th, 2024
- Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools - Nature.com - October 20th, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 20th, 2024
- Sources and Clinical Applications of Mesenchymal Stem Cells - October 20th, 2024
- Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth - Nature.com - October 18th, 2024
- Researchers pioneer novel method to enhance effectiveness of MSC therapy for cartilage repair - Medical Xpress - October 18th, 2024
- Healing begins with research: Promising development program on stem cells in rare diseases - Yahoo! Voices - October 15th, 2024
- Unveiling the Immunomodulatory and regenerative potential of iPSC-derived mesenchymal stromal cells and their extracellular vesicles - Nature.com - October 15th, 2024
- Manufactured stem cells could help to treat blood cancers in the future - Health Tech World - October 14th, 2024
- miR-16a-5p antagonizes FGF-2 in ligamentogenic differentiation of MSC: a new therapeutic perspective for tendon regeneration - Nature.com - October 11th, 2024
- Effects, methods and limits of the cryopreservation on mesenchymal stem ... - October 10th, 2024
- ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m6A modification of VDAC3... - October 10th, 2024
- Mesenchymal stromal cells: Biology of adult mesenchymal stem cells ... - October 8th, 2024
- Clever Robotic clothing and manufactured stem cells to treat cancer among revolutionary healthcare tech projects - University of Strathclyde - October 8th, 2024
- Dr. Peisong Gao, MD, PhD - Hopkins Medicine - October 4th, 2024
- Research to Boost Bone Formation Informs Orthopaedic Treatments - October 4th, 2024
- Garza Laboratory - Johns Hopkins Medicine - October 4th, 2024
- Stem Cell Treatment Promises to Prevent Disease and Slow Aging - Newsweek - September 30th, 2024
- Survival advantage of native and engineered T cells is acquired by mitochondrial transfer from mesenchymal stem cells - Journal of Translational... - September 28th, 2024
- A mathematical insight to control the disease psoriasis using mesenchymal stem cell transplantation with a biologic inhibitor - Nature.com - September 20th, 2024
- Mesenchymal stem cells in tumor microenvironment: drivers of bladder cancer progression through mitochondrial dynamics and energy production -... - September 20th, 2024
- Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB - Nature.com - September 20th, 2024
- Strategic targeting of miR-183 and -catenin to enhance BMSC stemness in age-related osteoporosis therapy - Nature.com - September 16th, 2024
- The order of green and red LEDs irradiation affects the neural differentiation of human umbilical cord matrix-derived mesenchymal cells - Nature.com - September 14th, 2024
- ENCell and Lucy Biotech Sign a Strategic Alliance and Licensing Agreement for the Next generation Mesenchymal Stem Cell Therapy (EN001) - PR Newswire - September 14th, 2024
- Japanese brand Eternam taps regenerative medicine to develop lip and skin care from umbilical cord-derived stem cell - CosmeticsDesign-Asia.com - September 10th, 2024
- Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis -... - September 8th, 2024
- Editorial: The future direction toward immunological issues of allo-and xeno-islet transplantation - Frontiers - September 8th, 2024
- Translational potential of mesenchymal stem cells in regenerative ... - September 4th, 2024
- Global microRNA profiling of bone marrow-MSC derived extracellular vesicles identifies miRNAs associated with hematopoietic dysfunction in aplastic... - August 24th, 2024
- A Comprehensive Review of the Role of Stem Cells in Neuroregeneration: Potential Therapies for Neurological Disorders - Cureus - August 22nd, 2024
- Efficacy of mesenchymal stem cell transplantation on major adverse cardiovascular events and cardiac function indices in patients with chronic heart... - August 22nd, 2024
- Infinite Health Integrative Medicine Center Revolutionizes Regenerative Medicine with Advanced Mesenchymal Signaling Cell Therapy - PR Newswire - August 22nd, 2024
- Stem Cell Therapy Market to Grow at 11.2% CAGR through 2031 - EIN News - August 22nd, 2024
- Immunomodulatory properties of nave and inflammation-informed dental pulp stem cell derived extracellular vesicles - Frontiers - August 20th, 2024
- Exciting advance in stem cell therapy - McGill Newsroom - August 16th, 2024
- Human umbilical cord-derived mesenchymal stromal cells for the treatment of steroid refractory grades III-IV acute graft-versus-host disease with... - August 16th, 2024
- Establishment of a stem cell administration imaging method in bleomycin-induced pulmonary fibrosis mouse models - Nature.com - August 16th, 2024
- Editorial: Bringing function to the forefront of cell therapy: how do we demonstrate potency? - Frontiers - August 12th, 2024
- Anti-aging enthusiasts are having stem cell injections in their knees at more than $16K a pop - New York Post - August 10th, 2024
- Exosomes and Equine Health - Horse Sport - August 10th, 2024
- Therapeutic application of mesenchymal stem cell-derived exosomes in skin wound healing - Frontiers - August 6th, 2024
- Zymeworks Provides Corporate Update and Reports Second Quarter 2024 Financial Results - August 2nd, 2024
- NextCure Provides Business Update and Reports Second Quarter 2024 Financial Results - August 2nd, 2024
- Cardiff Oncology to Report Second Quarter 2024 Results and Provide Business Update - August 2nd, 2024
- Terns Pharmaceuticals Reports Inducement Grant to New Employee Under Nasdaq Listing Rule 5635(C)(4) - August 2nd, 2024
- T2 Biosystems to Attend Upcoming Investor Conferences - August 2nd, 2024
- Myriad Genetics Advances International Reorganization and Completes Sale of EndoPredict Business to Eurobio Scientific - August 2nd, 2024
- Supernus Resubmits NDA for SPN-830 Apomorphine Infusion Device - August 2nd, 2024
- electroCore Announces Inducement Grant under NASDAQ Listing Rule 5635(c)(4) - August 2nd, 2024
- Fate Therapeutics Reports New Employee Inducement Awards Under Nasdaq Listing Rule 5635(c)(4) - August 2nd, 2024
- NewAmsterdam Pharma Reports Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) - August 2nd, 2024
- Arcutis Biotherapeutics Reports Inducement Grants Under Nasdaq Listing Rule 5635(c)(4) - August 2nd, 2024
- ORIC Pharmaceuticals Reports Inducement Grants under Nasdaq Listing Rule 5635(c)(4) - August 2nd, 2024
- Stem cell therapy leads to short-term disability reduction in MS - Multiple Sclerosis News Today - July 22nd, 2024
- Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance -... - July 22nd, 2024
- Clene to Present at the Emerging Growth Conference - July 14th, 2024
- Voting Rights and Shares Capital of the Company - July 10th, 2024
- GENFIT: Half-Year Report of Liquidity Contract with Crédit Industriel et Commercial - July 10th, 2024
Recent Comments