Share this Article
You are free to share this article under the Attribution 4.0 International license.
Researchers have found a way, in mice and human tissue, to regenerate the cartilage that eases movement between bones.
Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans.
The researchers can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage before it is badly degraded.
Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.
The researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal.
Cartilage has practically zero regenerative potential in adulthood, so once its injured or gone, what we can do for patients has been very limited, says co-senior author Charles K.F. Chan, assistant professor of surgery at Stanford Universitys School of Medicine.
Its extremely gratifying to find a way to help the body regrow this important tissue, Chan says.
The work builds on previous research that resulted in isolation of the skeletal stem cell, a self-renewing cell that is also responsible for the production of bone, cartilage and a special type of cell that helps blood cells develop in bone marrow.
Articular cartilage is a complex and specialized tissue that provides a slick and bouncy cushion between bones at the joints. When this cartilage is damaged by trauma, disease, or simply thins with age, bones can rub directly against each other, causing pain and inflammation, which can eventually result in arthritis.
Damaged cartilage can be treated through a technique called microfracture, in which tiny holes are drilled in the surface of a joint. The microfracture technique prompts the body to create new tissue in the joint, but the new tissue is not much like cartilage.
I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
Microfracture results in what is called fibrocartilage, which is really more like scar tissue than natural cartilage, says Chan. It covers the bone and is better than nothing, but it doesnt have the bounce and elasticity of natural cartilage, and it tends to degrade relatively quickly.
The most recent research arose, in part, through the work of surgeon and lead author Matthew Murphy, a visiting researcher at Stanford who is now at the University of Manchester.
I never felt anyone really understood how microfracture really worked, Murphy says. I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
For a long time, Chan says, people assumed that adult cartilage did not regenerate after injury because the tissue did not have many skeletal stem cells that could be activated. Working in a mouse model, the team documented that microfracture did activate skeletal stem cells. Left to their own devices, however, those activated skeletal stem cells regenerated fibrocartilage in the joint.
But what if the healing process after microfracture could be steered toward development of cartilage and away from fibrocartilage?
The researchers knew that as bone develops, cells must first go through a cartilage stage before turning into bone. They had the idea that they might encourage the skeletal stem cells in the joint to start along a path toward becoming bone, but stop the process at the cartilage stage.
The researchers used a powerful molecule called bone morphogenetic protein 2 (BMP2) to initiate bone formation after microfracture, but then stopped the process midway with a molecule that blocked another signaling molecule important in bone formation, called vascular endothelial growth factor (VEGF).
What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get, Chan says. It also restored mobility to osteoarthritic mice and significantly reduced their pain.
As a proof of principle that this might also work in humans, the researchers transferred human tissue into mice that were bred to not reject the tissue, and were able to show that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.
The next stage of research is to conduct similar experiments in larger animals before starting human clinical trials. Murphy points out that because of the difficulty in working with very small mouse joints, there might be some improvements to the system they could make as they move into relatively larger joints.
The first human clinical trials might be for people who have arthritis in their fingers and toes. We might start with small joints, and if that works we would move up to larger joints like knees, Murphy says.
Right now, one of the most common surgeries for arthritis in the fingers is to have the bone at the base of the thumb taken out. In such cases we might try this to save the joint, and if it doesnt work we just take out the bone as we would have anyway. Theres a big potential for improvement, and the downside is that we would be back to where we were before.
One advantage of their discovery is that the main components of a potential therapy are approved as safe and effective by the FDA, says co-senior author Michael Longaker, professor of surgery.
BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies, he says. This would help speed the approval of any therapy we develop.
Joint replacement surgery has revolutionized how doctors treat arthritis and is very common: By age 80, 1 in 10 people will have a hip replacement and 1 in 20 will have a knee replaced. But such joint replacement is extremely invasive, has a limited lifespan and is performed only after arthritis hits and patients endure lasting pain.
The researchers say they can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage in their joints before it is badly degraded.
One idea is to follow a Jiffy Lube model of cartilage replenishment, Longaker says. You dont wait for damage to accumulateyou go in periodically and use this technique to boost your articular cartilage before you have a problem.
The work appears in the journal Nature Medicine.
Support for the research came from the National Institutes of Health, the California Institute for Regenerative Medicine, the Oak Foundation, the Pitch Johnson Fund, the Gunn/Olivier Research Fund, the Stinehart/Reed Foundation, The Siebel Foundation, the Howard Hughes Medical Institute, the German Research Foundation, the PSRF National Endowment, National Center for Research Resources, the Prostate Cancer Research Foundation, the American Federation of Aging Research, and the Arthritis National Research Foundation.
Source: Stanford University
Link:
Method regrows cartilage to cushion bones - Futurity: Research News
- Trial Repairs Irreversible Corneal Damage With Stem Cell Therapy - Anti Aging News - March 11th, 2025
- Advancing Regenerative Medicine: A Comprehensive Outlook on the Global Cell Therapy Market - openPR - March 7th, 2025
- Top 3 Grants in Regenerative Medicine: February 2025 - RegMedNet - March 7th, 2025
- The future of cell therapy: scaling production for global reach - Drug Target Review - March 7th, 2025
- Stem Cell Therapy Repairs Corneal Damage in Trial - Mirage News - March 7th, 2025
- Autologous Cell Therapy Market Anticipated to Hit USD 12.1 Billion by 2031: Persistence Market Research Study - openPR - March 7th, 2025
- Regenerative Therapies Market Forecast to Reach USD 24.41 Billion by 2033 - Persistence Market Research - openPR - March 5th, 2025
- This Japanese Regenerative Medicine Company Just Secured Its Path to NASDAQ Through a $242M Deal - StockTitan - March 5th, 2025
- Ryoncil, the first FDA-approved mesenchymal stromal cell therapy - Yahoo - March 5th, 2025
- Animal Stem Cell Therapy Market Forecast to Reach USD 437.3 - openPR - March 3rd, 2025
- A Navy SEALs Journey to Stem Cell Treatment: The Future of Medicine is Here, Just Not in America - SOFREP - March 3rd, 2025
- InnovationRx: Eli Lilly Has Stockpiled Nearly $550 Million Of Its Next Obesity Drug - Forbes - March 3rd, 2025
- VUMC Part of New Study Validating Curative Therapy for Sickle Cell Disease A - Wgnsradio - March 1st, 2025
- Advancing Stem Cell Therapy and Equity in Patient Care - Targeted Oncology - February 27th, 2025
- How Stem Cell Treatment Reversed A Pro Athlete's Life-threatening Long COVID Disease When all Other treatment Failed - Medical Tourism Magazine - February 27th, 2025
- Allogeneic Cell Therapy Market Size to Hit USD 4,677.38 Million by 203 - BioSpace - February 27th, 2025
- Bringing Fibroblasts to the Spotlight: Q&A with FibroBiologics - Pharmaceutical Executive - February 27th, 2025
- Mount Sinai-Led Research Team Identifies Underlying Mechanisms of Age-Related Dysfunction in Glands Crucial to Eye Function | Newswise - Newswise - February 25th, 2025
- Experts explore the future of iPSC-based cell therapies - Drug Target Review - February 19th, 2025
- Longeveron Announces World Health Organization Approval of laromestrocel as International Non-proprietary Name for Stem Cell Therapy Lomecel-B -... - February 19th, 2025
- The impact of cytokines on stem cells and organoid research in drug discovery - News-Medical.Net - February 19th, 2025
- Revolutionary FDA-Approved Stem Cell Partnership Puts Adia Med at Forefront of Regenerative Medicine - StockTitan - February 19th, 2025
- Bahrain Makes History with First Successful CRISPR-Based Sickle Cell Treatment Outside the US - BioSpace - February 19th, 2025
- Bahrain's pioneering use of sickle cell disease treatment hailed by medical experts - The National - February 19th, 2025
- Uganda Treats First Patient Using Stem Cell Therapy - AllAfrica - Top Africa News - February 19th, 2025
- Bahrain Makes History with First Successful CRISPR-Based Sickle Cell Treatment Outside the US - StreetInsider.com - February 17th, 2025
- Diversity of Cells Allow Colon Cancer to Resist Treatment and To Metastasize - MedicalResearch.com - February 15th, 2025
- Survival outcomes between haploidentical stem cell transplantation and chemotherapy for blastic plasmacytoid dendritic cell neoplasm - Nature.com - February 13th, 2025
- Experimental cell therapy trial treats first Sjgrens disease patient - University of Wisconsin School of Medicine and Public Health - February 11th, 2025
- Stem Cell Therapy Market Types, Applications, Share, Growth - openPR - February 6th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 6th, 2025
- Revitalizing Health with Stem Cell Therapy: A Groundbreaking Path To Longevity and Wellness - openPR - February 4th, 2025
- Gene therapy offers new hope for sickle cell disease patients - Open Access Government - February 4th, 2025
- Scientists trial implant to patch up the heart - BBC.com - February 2nd, 2025
- Cell Therapy Market Size is Projected to Reach USD 33.93 - GlobeNewswire - January 28th, 2025
- Meet the California Institute Pushing Stem Cell & Gene Therapy Research: Part 3 - The Medicine Maker - January 28th, 2025
- Immusoft to Present Positive Data from the First Engineered B Cell in a Human Clinical Trial at the 21st Annual WorldSymposium 2025 - The Eastern... - January 28th, 2025
- Beyond the Lab: Stem cell research - Drug Target Review - January 25th, 2025
- Asia Pacific Stem Cell Therapy Market to Reach US$ 4,075.75 Million by 2033 with a Robust CAGR of 10.29% - openPR - January 25th, 2025
- Exciting data: S.Biomedics preps US IND of PD cell therapy - BioWorld Online - January 25th, 2025
- $24.85 Billion Cell Therapy Market Forecast by 2032 (CAGR 20.4%) - openPR - January 25th, 2025
- Stem Cell Therapy Market Expected to Expand at a Steady 2025-2032 - openPR - January 25th, 2025
- Regenerative Medicine Market to receive overwhelming hike US$ 164.9 billion in Revenues by 2032, Growing at a CAGR of 23.30% From 2024 to 2032 -... - January 25th, 2025
- Alternative medicine fans see RFK Jr. as a hero. The fields skeptics worry. - The Washington Post - January 23rd, 2025
- U.S. PRP and Stem Cell Alopecia Treatment Market Analysis 2025-2030 by Treatment, Indication, and End-use - Androgenic Alopecia Dominated the Market... - January 23rd, 2025
- The Future of Regenerative Medicine Lies in the Hands of Chiropractors - Dynamic Chiropractic - January 23rd, 2025
- Stem Cell Therapy Industry Dynamics and Contributions by RTI - openPR - January 21st, 2025
- Stem Cells Market to Reach USD 44.27 Billion by 2033, Driven by Expanding Applications and Innovations - openPR - January 21st, 2025
- Organoids at the Forefront Innovations in Stem Cell Research and Precision Medicine - openPR - January 21st, 2025
- The promising future of regenerative medicine - Yahoo Finance - January 17th, 2025
- An earful of gill: USC Stem Cell study points to the evolutionary origin of the mammalian outer ear - EurekAlert - January 11th, 2025
- Aspen Partners with Mytos to Automate Stem Cell Production for Parkinsons Therapy - Genetic Engineering & Biotechnology News - January 9th, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 9th, 2025
- Meet CIRM: the California Institute Pushing Stem Cell and Gene Therapy Research: Part 1 - The Medicine Maker - January 7th, 2025
- Regenerative Medicine Market to Experience Significant Growth, Projected to Reach $183.08 Billion by 2031. - openPR - January 7th, 2025
- Stem-cell therapies that work: 10 Breakthrough Technologies 2025 - MIT Technology Review - January 5th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 3rd, 2025
- Stem Health Plus Revolutionizes Skin Regeneration with Advanced Stem Cell Skin Graft Technology - The Manila Times - January 1st, 2025
- Allogeneic Stem Cell Transplantation Market Size to Expand Lucratively by 2031 - openPR - January 1st, 2025
- Apoptotic clearance by stem cells: molecular mechanisms for recognition and phagocytosis of dead cells - Nature.com - December 30th, 2024
- Why Medical Tourists are Choosing Mexico: The Affordable Alternative for Advanced Stem Cell Treatments - openPR - December 30th, 2024
- Induced Pluripotent Stem Cells (iPSC) Production Market: Trends, Growth, and the Role of AI - openPR - December 30th, 2024
- Stem cells 'instructed' to form specific tissues and organs - New Atlas - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Galveston County Daily News - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Voice Of Alexandria - December 28th, 2024
- U.S. Stem Cell Therapy Market Revenue to Attain USD 17.70 Bn by 2033 - Precedence Research - December 27th, 2024
- Here are some biggest medical breakthroughs of 2024 - Medical Buyer - December 27th, 2024
- Researchers from Korea University explore how ascorbic acid and FGF4 revolutionize regenerative medicine - EurekAlert - December 27th, 2024
- Regenerative Medicine Market to Skyrocket to USD 73,084.2 Million by 2033 at a 18.5% of CAGR - openPR - December 27th, 2024
- Stem cell therapy to correct heart failure in children could 'transform lives' - Fox News - December 25th, 2024
- Advancing type 1 diabetes therapy: autologous islet transplant breakthrough - Nature.com - December 25th, 2024
- Stem Cell Therapy Market to Triple in Value, Reaching USD 52.1 Billion by 2034 at a 12.1% of CAGR - openPR - December 25th, 2024
- Stem-cell therapies: A breakthrough in treating parkinson's, cancer, diabetes, and more - The Business Standard - December 25th, 2024
- Replay 2024 : 6 Biggest Medical Breakthroughs Of 2024 - NewsX - December 25th, 2024
- Tumbling stem cells? Watch how movement plays a part in their fate - Scope - December 20th, 2024
- SCD patients free of VOEs after treatment with gene-editing therapy - Sickle Cell Disease News - December 20th, 2024
- Japan's Sumitomo to establish regenerative medicine and cell therapy joint venture - BSA bureau - December 20th, 2024
- Brain cells remain healthy after a month on the International Space Station, but mature faster than brain cells on Earth - EurekAlert - December 19th, 2024
Recent Comments