Blood in the placenta and umbilical cord after birth
Cord blood (umbilical cord blood) is blood that remains in the placenta and in the attached umbilical cord after childbirth. Cord blood is collected because it contains stem cells, which can be used to treat hematopoietic and genetic disorders.
Cord blood is composed of all the elements found in whole blood - red blood cells, white blood cells, plasma, platelets.[1] Compared to whole blood some differences in the blood composition exist, for example, cord blood contains higher numbers of natural killer cells, lower absolute number of T-cells and a higher proportion of immature T-cells.[2] However, the interest in cord blood is mostly driven by the observation that cord blood also contains various types of stem and progenitor cells, mostly hematopoietic stem cells.[1][2][3] Some non-hematopoietic stem cell types are also present in cord blood, for example, mesenchymal stem cells, however these are present in much lower numbers that can be found in adult bone marrow.[2][3]Endothelial progenitor cells and multipotent unrestricted adult stem cells can also be found in cord blood.[3] The stem cells found in cord blood are often confused with embryonic stem cells - unlike embryonic stem cells, cord blood stem cells are all types of adult stem cells, are lineage restricted and are not pluripotent.[3][4][5]
Cord blood is used the same way that hematopoietic stem cell transplantation is used to reconstitute bone marrow following radiation treatment for various blood cancers, and for various forms of anemia.[6][7] Its efficacy is similar as well.[6]
Adverse effects are similar to hematopoietic stem cell transplantation, namely graft-versus-host disease if the cord blood is from a genetically different person, and the risk of severe infection while the immune system is reconstituted.[6] To assure that the smallest amount of complications occur during transplantation, levels of engraftment must be present; specifically both neutrophils and platelets must be being produced.[8] This process of neutrophil and platelet production after the transplant, however, takes much longer than that of stem cells.[8] In many cases, the engraftment time depends on the cell dose, or the amount of stem cells obtained in the sample of blood.[8] In Dr. Moises article about umbilical cord blood [9] (as cited in [8]), it was found that there is approximately 10% less stem cells in cord blood than there is in bone marrow. Therefore a sufficient amount of cord blood must be obtained in order to collect an adequate cell dose, however this amount varies from infant to infant and is irreplaceable. Given that this idea is quite new, there is still a lot of research that needs to be completed. For example, it is still unknown how long cord blood can safely be frozen without losing its beneficial effects.[8]
There is a lower incidence with cord blood compared with traditional HSCT, despite less stringent HLA match requirements.[6]
Umbilical cord blood is the blood left over in the placenta and in the umbilical cord after the birth of the baby. There are several methods for collecting cord blood. The method most commonly used in clinical practice is the "closed technique", which is similar to standard blood collection techniques. With this method, the technician cannulates the vein of the severed umbilical cord using a needle that is connected to a blood bag, and cord blood flows through the needle into the bag. On average, the closed technique enables collection of about 75 ml of cord blood.[10]
Collected cord blood is cryopreserved and then stored in a cord blood bank for future transplantation. Cord blood collection is typically depleted of red blood cells before cryopreservation to ensure high rates of stem cell recovery.[11]
The first successful cord blood transplant (CBT) was done in 1988 in a child with Fanconi anemia.[6] Early efforts to use CBT in adults led to mortality rates of about 50%, due somewhat to the procedure being done in very sick people, but perhaps also due to slow development of immune cells from the transplant.[6] By 2013, 30,000 CBT procedures had been performed and banks held about 600,000 units of cord blood.[7]
The AABB has generated accreditation standards for cord blood banking facilities.[12]
In the United States, the Food and Drug Administration regulates any facility that stores cord blood; cord blood intended for use in the person from whom it came is not regulated, but cord blood for use in others is regulated as a drug and as a biologic.[13] Several states also have regulations for cord blood banks.[12]
In Europe, Canada, and Australia use of cord blood is regulated as well.[12] In the United Kingdom the NHS Cord Blood Bank was set up in 1996 to collect, process, store and supply cord blood; it is a public cord blood bank and part of the NHS.[14]
A cord blood bank may be private (i.e. the blood is stored for and the costs paid by donor families) or public (i.e. stored and made available for use by unrelated donors). While public cord blood banking is widely supported, private cord banking is controversial in both the medical and parenting community. Although umbilical cord blood is well-recognized to be useful for treating hematopoietic and genetic disorders, some controversy surrounds the collection and storage of umbilical cord blood by private banks for the baby's use. Only a small percentage of babies (estimated at between 1 in 1,000 to 1 in 200,000[15]) ever use the umbilical cord blood that is stored. The American Academy of Pediatrics 2007 Policy Statement on Cord Blood Banking stated: "Physicians should be aware of the unsubstantiated claims of private cord blood banks made to future parents that promise to insure infants or family members against serious illnesses in the future by use of the stem cells contained in cord blood." and "private storage of cord blood as 'biological insurance' is unwise" unless there is a family member with a current or potential need to undergo a stem cell transplantation.[15][16] The American Academy of Pediatrics also notes that the odds of using a person's own cord blood is 1 in 200,000 while the Institute of Medicine says that only 14 such procedures have ever been performed.[17]
Private storage of one's own cord blood is unlawful in Italy and France, and it is also discouraged in some other European countries. The American Medical Association states "Private banking should be considered in the unusual circumstance when there exists a family predisposition to a condition in which umbilical cord stem cells are therapeutically indicated. However, because of its cost, limited likelihood of use, and inaccessibility to others, private banking should not be recommended to low-risk families."[18] The American Society for Blood and Marrow Transplantation and the American Congress of Obstetricians and Gynecologists also encourage public cord banking and discourage private cord blood banking. Nearly all cord blood transplantations come from public banks, rather than private banks,[16][19] partly because most treatable conditions can't use a person's own cord blood.[15][20] The World Marrow Donor Association and European Group on Ethics in Science and New Technologies states "The possibility of using ones own cord blood stem cells for regenerative medicine is currently purely hypothetical....It is therefore highly hypothetical that cord blood cells kept for autologous use will be of any value in the future" and "the legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service which has presently no real use regarding therapeutic options."[21]
The American Academy of Pediatrics supports efforts to provide information about the potential benefits and limitations of cord blood banking and transplantation so that parents can make an informed decision. In addition, the American College of Obstetricians and Gynecologists recommends that if a patient requests information on umbilical cord blood banking, balanced information should be given. Cord blood education is also supported by legislators at the federal and state levels. In 2005, the National Academy of Sciences published an Institute of Medicine (IoM) report titled "Establishing a National Cord Blood Stem Cell Bank Program".[22]
In March 2004, the European Union Group on Ethics (EGE) has issued Opinion No.19[23] titled Ethical Aspects of Umbilical Cord Blood Banking. The EGE concluded that "[t]he legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service, which has presently, no real use regarding therapeutic options. Thus they promise more than they can deliver. The activities of such banks raise serious ethical criticisms."[23]
Though uses of cord blood beyond blood and immunological disorders is speculative, some research has been done in other areas.[24] Any such potential beyond blood and immunological uses is limited by the fact that cord cells are hematopoietic stem cells (which can differentiate only into blood cells), and not pluripotent stem cells (such as embryonic stem cells, which can differentiate into any type of tissue). Cord blood has been studied as a treatment for diabetes.[25] However, apart from blood disorders, the use of cord blood for other diseases is not in routine clinical use and remains a major challenge for the stem cell community.[24][25]
Along with cord blood, Wharton's jelly and the cord lining have been explored as sources for mesenchymal stem cells (MSC),[26] and as of 2015 had been studied in vitro, in animal models, and in early stage clinical trials for cardiovascular diseases,[27] as well as neurological deficits, liver diseases, immune system diseases, diabetes, lung injury, kidney injury, and leukemia.[28]
Cord blood is being used to get stem cells with which to test in people with type 1 diabetes mellitus.[29]
The stem cells from umbilical cord blood are also being used in the treatment of a number of blood diseases including blood cancers.[30]
Cord blood is also being studied as a substitute for normal blood transfusions in the developing world.[30][31] More research is necessary prior to the generalized utilization of cord blood transfusion.[30]
Read the rest here:
- LMRUK: New mothers share why theyre banking their babies cord blood stem cells - Charity Today News - November 29th, 2024
- scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes... - November 26th, 2024
- Cord Blood Banking FAQs - Cord For Life - November 25th, 2024
- Hematopoietic Stem Cell Transplantation Market: Industry Analysis and Forecast 2024-2033 - openPR - November 22nd, 2024
- Thousands of donations, fewer than 2% used. Why cord blood transplants are so rare - CBC News - November 18th, 2024
- Stem cells: the alternative solution to umbilical cord blood - Genethique - November 10th, 2024
- Chapter 64 Role of Umbilical Cord Blood Transplantation - October 30th, 2024
- Major Trend Transforming the Stem Cell Market in 2024: Advancements in Automated Stem Cell Analysis Systems - EIN News - October 30th, 2024
- Stem cell therapies for neurological disorders: current progress ... - October 22nd, 2024
- OmniaBio Announces Opening of New Commercial Manufacturing Facility in Canada, Bringing Life-Saving Cell and Gene Therapies to Patients - AsiaOne - October 18th, 2024
- Click N' Play STEM Lesson on Cord Blood Launches for Teachers this November - EIN News - October 18th, 2024
- Black, White Cancer Patients Now Benefit Equally From Cord Blood Therapy - HealthDay - October 4th, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 20th, 2024
- Advanced Treatment for Leukemia and Lymphoma at Lehigh Valley Topper Cancer Institute - LVHN News - September 18th, 2024
- Functional stem cells successfully grown in lab for the first time - The Star Online - September 14th, 2024
- Umbilical Cord Blood Stem Cells as Third-party Adjuvant Infusions in Human Leukocyte Antigen Antibody-Positive Patients Undergoing Haploidentical... - September 12th, 2024
- Cord Blood Banking Market Size to Surpass USD 65.6 Billion by 2032 | With 7.9% CAGR - openPR - September 12th, 2024
- Blood stem cell breakthrough could have massive impact on patients - Yahoo! Voices - September 8th, 2024
- Scientists have grown blood stem cells in the laboratory - TURKMENPORTAL - September 4th, 2024
- Global Cord Blood Product Market Poised for Significant Growth: Projected to Reach USD 1,341.7 Million by 2034 | Future Market Insights, Inc. - Yahoo... - September 2nd, 2024
- Global Allogeneic Stem Cell Transplantation Market Expected to Grow to $6.75 Billion by 2031 - WhaTech - August 31st, 2024
- Global Cord Blood Product Market Poised for Significant Growth: Projected to Reach USD 1,341.7 Million by 2034 | Future Market Insights, Inc. -... - August 31st, 2024
- Expansion Of Cord Blood-derived CD34 Cells In A Hollow-Fiber Bioreactor With 10% Standard Cytokine Concentration - BioProcess Online - August 22nd, 2024
- New Study: These Bizarre Blood-Sucking Fish Have a Jaw-Dropping Evolutionary Origin - SciTechDaily - July 31st, 2024
- Cord blood banking industry faces scrutiny over unproven claims and high costs - News-Medical.Net - July 28th, 2024
- Stem cells donated 15 years ago let poorly boy, five, leave home for the first time in six months - Express & Star - July 26th, 2024
- Cord blood stem cells transferred from Guangdong to treat girl with thalassemia - Hong Kong Standard - July 26th, 2024
- Cord Blood Banking Curative Benefits Often Oversold to Parents: NYT Investigation - AboutLawsuits.com - July 22nd, 2024
- Umbilical cord stem cells donated in 2008 transform life of five-year-old boy with rare genetic disorder - The Independent - July 22nd, 2024
- Boy, 5, diagnosed with deadly rare condition has life transformed after stem cell transplant from umbilical cord blood - Sky News - July 22nd, 2024
- Stem cells donated 15 years ago let poorly boy, five, leave home for the first time in six months - Shropshire Star - July 22nd, 2024
- Ottawa mother raising awareness on importance of donating umbilical cord blood - CTV News Ottawa - July 22nd, 2024
- Inside a blood cord bank: How facilities store and maintain the quality of units - CNA - July 8th, 2024
- Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells ... - Nature.com - July 5th, 2024
- Overview of Umbilical Cord Blood - Stanford Medicine - July 5th, 2024
- Comparison of the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells and adipose ... - Frontiers - July 5th, 2024
- A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic ... - Frontiers - July 2nd, 2024
- Jacques Galipeau, MD, on International Insights Into Cell and Gene Therapy Development - CGTLive - June 30th, 2024
- Stem Cell Therapy Market to Hit $63.23 billion by 2031, at a CAGR of 22.6%, says Coherent Market Insights - GlobeNewswire - June 28th, 2024
- Hematopoietic stem cell transplantation (HSCT) Market Future Growth Trends, Upcoming Opportunities and ... - openPR - June 24th, 2024
- Global Biopreservation Market Forecast Report 2024-2029: Advances in Biobanking and Growing Trend of Conserving ... - GlobeNewswire - June 4th, 2024
- Cord Blood Banking Services Market to Witness Impressive Growth, Reaching USD 4.5 Billion by 2030 - EIN News - May 27th, 2024
- Department of Health Abu Dhabi and M42 launch regions largest hybrid cord blood bank - ZAWYA - May 15th, 2024
- Cord Blood Banking - Stanford Medicine Children's Health - May 8th, 2024
- Umbilical Cord Blood Transplants: Current Status and Evolving Therapies - May 8th, 2024
- Embattled Cordlife receives letter of demand from client for breach of contract - The Straits Times - May 4th, 2024
- From Cord Blood to Microbiome; The evolution of Rotary's gift to the people of WA - Lifeblood - May 2nd, 2024
- Efficacy and safety of human umbilical cord-derived mesenchymal stem cells in the treatment of refractory immune ... - Nature.com - April 28th, 2024
- Hitting the pavement for cord blood research | Cranbourne Star News - Cranbourne Star News - April 28th, 2024
- One year to test 200 Cordlife samples 'totally unjustified': Global cord blood banking experts - The Straits Times - April 15th, 2024
- Clinical trial: First cardiac bioimplants for treatment of myocardial infarction using umbilical cord stem cells - Medical Xpress - April 7th, 2024
- The umbilical cord: a rich and ethical stem cell source to advance ... - March 30th, 2024
- Story of discovery: getting a Notch up on cord blood cell ... - March 30th, 2024
- Cord Blood Transplants | Memorial Sloan Kettering Cancer Center - March 30th, 2024
- Therapeutic effect and study of human umbilical cord blood mononuclear cells in patients with ischaemic bowel ... - Nature.com - March 17th, 2024
- Global Cord Blood & Tissue Banking Industry Report 2024: The Vast Majority of the Global Cord Blood Market is Now ... - PR Newswire - March 15th, 2024
- Improving Transplant Outcomes and Cell Therapy Approaches - RegMedNet - March 9th, 2024
- The inhibition of ADAM17 in cord blood stem cell-derived CD16+ NK cells to enhance their cytotoxicity against acute ... - ScienceDirect.com - March 1st, 2024
- Beating Blood Cancer through Recycling - a Community crowdfunding project in Liverpool by Kate Williams - Crowdfunder UK - February 24th, 2024
- Cord Blood Registry (CBR ) by CooperSurgical and Fulgent Genetics Launch Innovative Genetic Testing - Investing.com Canada - February 9th, 2024
- Young cancer patient with 'no hope' of recovery saved by baby's umbilical cord - Study Finds - February 9th, 2024
- Global Cord Blood & Tissue Banking Industry Report 2024 - The Vast Majority of the Global Cord Blood Market is Now ... - ACROFAN - January 26th, 2024
- Finding the optimal combination of anticancer drug administration for the conditioning of cord blood transplantation - Medical Xpress - January 26th, 2024
- Cord Blood Banking Market Sales and Revenue Report 2023-2032 - WhaTech Technology and Markets News - January 26th, 2024
- Global Cord Blood & Tissue Banking Industry Report 2024 - The Vast Majority of the Global Cord Blood Market is Now ... - ACROFAN USA - January 24th, 2024
- Global Biobanking Market Size To Exceed USD 97.5 Billion By 2032 | CAGR of 5.8% - GlobeNewswire - January 24th, 2024
- The use of cryopreservation in life saving research - The Manufacturer - January 24th, 2024
- CD19-targeted CAR NK cell therapy achieves promising one-year results in patients with B-cell malignancies - Medical Xpress - January 18th, 2024
- Cord blood banking comes at a high cost to babies - STAT - STAT - January 18th, 2024
- Global Cord Blood and Tissue Banking Industry Gains Traction Amidst Surging M&A Activity and Technological Advances - PR Newswire - January 16th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - On Cancer - Memorial Sloan Kettering - January 11th, 2024
- Ask the doctors: Research being conducted on using stem cells to treat diabetes - The Spokesman Review - January 4th, 2024
- askST: Can cord blood units be transferred from one bank to another? - The Straits Times - December 27th, 2023
- Timeline: Cordlife's mishandling of cord blood units in Singapore - CNA - December 15th, 2023
- Next-Level Evolution: Enhancing the Human Body With Anthrobots ... - Securities.io - December 5th, 2023
- Fred Hutch at ASH: Gene therapies for sickle cell, how to improve ... - Fred Hutchinson Cancer Center - December 5th, 2023
- Enhancing the immunosuppressive properties of human umbilical ... - Phys.org - December 1st, 2023
- Global Status and Trends for Thromboangiitis Obliterans | JPR - Dove Medical Press - December 1st, 2023
- Early Stage Cell Therapy Trial Shows Promise in Treating Progressive Multiple Sclerosis - University of Colorado Anschutz Medical Campus - December 1st, 2023
- Global Medical Specialty Bag Market is Expected to Reach US$ 9.4 Billion by 2034, Rising at a Steady 4.7% CAGR | Future Market Insights, Inc. - Yahoo... - November 29th, 2023
Recent Comments