Chemotherapeutic drug resistance is one reason cancer remains an unsolved clinical problem despite the efforts ever since President Nixon declared his "War on Cancer" in 1971. Cancer cells, due in part to the genetic destabilization characteristic of the disease, are capable of expressing genes (normal or aberrant) that permit the cell to avoid the cytotoxic effect of such drugs with the patient providing the situs of selection for and growth of resistant cells. The phenomenon is certain tumor types can have more deleterious consequences than in others, and this is particularly true for glioblastomas (and their non-malignant counterparts, gliomas), cancer of the cells that protect neurons in brain. That organ, confined to the skull, cannot accommodate tumor growth without damaging the brain with which it is confined.
The chemotherapeutic drug of choice for treating glioblastomas is temezolomide (TMZ), an oral alkylating agent that had its chemotherapeutic effect by introducing alkyl groups onto nucleotide bases (preferably at the N-7 and O-6 positions of guanine and N-3 position of adenine) in tumor cell DNA preferentially (due to the greater amount of DNA synthesis occurring in these cells) and disrupting the process leading to cell death (the O-6 methylation having the greatest capacity to induce apoptosis or programmed cell death).O-6-methylguanosnine DNA methyltransferase (MGMT) is the cellular enzyme responsible for repairing alkylated bases in DNA and reduced expression of this gene (e.g., by hypermethylation of the MGMT promoter) is a biomarker for TMZ sensitivity in gliomas and glioblastomas. Recently, a multinational team of researchers* reported genetic rearrangements associated with TMZ resistance, in a paper entitled "MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas" published in Nature Communications. This paper shows a subset of gliomas with rearrangements in the MGMT gene that produce overexpression of the gene and resistance as a result. These authors screened 252 TMZ-treated recurrent gliomas by RNA sequencing and found eight different MGMT genetic fusions (designated BTRC-MGMT,CAPZB-MGMT,GLRX3-MGMT,NFYC-MGMT,RPH3A-MGMT, andSAR1A-MGMTin high-grade gliomas, HGG, andCTBP2-MGMTandFAM175B-MGMT in low-grade gliomas, LGG, in the paper) in seven patients (6 females) with recurrent disease, created by chromosomal rearrangement (see Figure 1c from paper; shown below). These individuals' tumors showed "significantly higher" expression of the rearranged MGMT gene product.
Upon further study, the authors report that five of the eight rearranged genes were located on Chromosome 10 in the vicinity of the MGMT gene itself. The breakpoint in the MGMT was uniformly found at the boundary of exon 2 of the MGMT gene, at a point 12 basepairs upstream of the ATG translation "start" codon. In three of the rearrangements, the breakpoint in the partner gene in the genetic fusion was found in the 5' untranslated region (UTR). All fusions were found to be in-frame (i.e., the reading frame of the MGMT transcript was not disrupted) and the functional regions of the MGMT protein (the methyltransferase domain and DNA-binding domain) were intact. A more fine-structure mapping experiment in the genetic rearrangement resulting in FAM175B-MGMTfound that the fusion was the consequence of a deletion of 4.8 Mb.
The effect of these rearrangements on MGMT expression was elucidated using CRIPSR-Cas9 to produce the BTRC-MGMT, NFYC-MGMT, SAR1A-MGMT, and CTBP2-MGMT rearrangements in cells of two glioblastoma cell lines, U251 and U87. When these cells and their untreated counterparts were challenged by growth in vitro with TMZ, only cells bearing the rearrangements (as confirmed by PCR analysis) were shown to be TMZ resistant. Unlike genetic rearrangements in other cancers that produce fusion proteins (such as the abl-bcr gene produced in chronic myelogenous leukemia bearing the diagnostic Philadelphia chromosome), because most of the rearrangements found involving the MGMT gene were located upstream of the initiation codon of the MGMT gene these authors reasoned that these rearrangements produce increased expression of MGMT leading to TMZ resistance because the cells were better able to repair the methylation injury and replicate functionally. This hypothesis was supported by real-time quantitative PCR analysis of MGMT transcripts in cells bearing the rearrangements, that showed a "striking" increase in expression of MGMT-encoding transcripts (an observation also found in tumors from patients whose gliomas or glioblastomas showed these rearrangements), and Western blot analysis confirmed higher expression levels of the MGMT protein. In two of the rearrangements (BTRC-MGMT and NFYC-MGMT), higher molecular weight fusion proteins were detected as predicted from the genetic data. These results were also replicated in patient tumor-derived stem cells for the BTRC-MGMTandSAR1A-MGMT rearrangements.
These results, and the researchers' conclusion that these rearrangements caused TMZ resistance by overexpression of MGMT, were confirmed by re-establishing TMZ sensitivity in these cells in the presence of O6-benzylguanine (O6-BG), an MGMT inhibitor. These results were further confirmed by detection of double-strand breaks in DNA in these cells in the presence of TMZ and O6-BG.
The relevance of these results to TMZ resistance in vivo was demonstrated using nude mouse xenograft models bearing tumors produced using BTRC-MGMT U251 cells and U251 cells without the rearrangement as control; these cells also contained a recombinant luciferase gene. Mice containing the rearrangement showed no significant prolongation of lifespan in the presence or absence of TMZ, indicating tumor cell resistance, whereas TMZ treatment of nave U251 cells showed improved survival.
While hypomethylation of the native MGMT promoter is the most frequently change associated with TMZ resistance, the results presented in this paper illustrate an alternative mechanism for glioblastomas and gliomas to acquire resistance to TMZ, the only current chemotherapeutic drugs for these maladies. Because these rearrangements were found in patients with recurrent tumors, these authors hypothesize that the rearrangements were selected or by TMZ treatment. A similar rearrangement has also been found in another cancer, medulloblastoma, after TMZ relapse. These authors also suggest that detection of these rearrangements can be used clinically to determine appropriate treatment modalities, particularly for recurrent disease.
* Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center; Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology; Beijing Neurosurgical Institute, Capital Medical University; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Systems Biology, Columbia University; The Jackson Laboratory for Genomic Medicine; and Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
Continued here:
- Experimental cell therapy trial treats first Sjgrens disease patient - University of Wisconsin School of Medicine and Public Health - February 11th, 2025
- Stem Cell Therapy Market Types, Applications, Share, Growth - openPR - February 6th, 2025
- Placental Stem Cell Therapy Solution Market Size And Booming - openPR - February 6th, 2025
- Revitalizing Health with Stem Cell Therapy: A Groundbreaking Path To Longevity and Wellness - openPR - February 4th, 2025
- Gene therapy offers new hope for sickle cell disease patients - Open Access Government - February 4th, 2025
- Scientists trial implant to patch up the heart - BBC.com - February 2nd, 2025
- Cell Therapy Market Size is Projected to Reach USD 33.93 - GlobeNewswire - January 28th, 2025
- Meet the California Institute Pushing Stem Cell & Gene Therapy Research: Part 3 - The Medicine Maker - January 28th, 2025
- Immusoft to Present Positive Data from the First Engineered B Cell in a Human Clinical Trial at the 21st Annual WorldSymposium 2025 - The Eastern... - January 28th, 2025
- Beyond the Lab: Stem cell research - Drug Target Review - January 25th, 2025
- Asia Pacific Stem Cell Therapy Market to Reach US$ 4,075.75 Million by 2033 with a Robust CAGR of 10.29% - openPR - January 25th, 2025
- Exciting data: S.Biomedics preps US IND of PD cell therapy - BioWorld Online - January 25th, 2025
- $24.85 Billion Cell Therapy Market Forecast by 2032 (CAGR 20.4%) - openPR - January 25th, 2025
- Stem Cell Therapy Market Expected to Expand at a Steady 2025-2032 - openPR - January 25th, 2025
- Regenerative Medicine Market to receive overwhelming hike US$ 164.9 billion in Revenues by 2032, Growing at a CAGR of 23.30% From 2024 to 2032 -... - January 25th, 2025
- Alternative medicine fans see RFK Jr. as a hero. The fields skeptics worry. - The Washington Post - January 23rd, 2025
- U.S. PRP and Stem Cell Alopecia Treatment Market Analysis 2025-2030 by Treatment, Indication, and End-use - Androgenic Alopecia Dominated the Market... - January 23rd, 2025
- The Future of Regenerative Medicine Lies in the Hands of Chiropractors - Dynamic Chiropractic - January 23rd, 2025
- Stem Cell Therapy Industry Dynamics and Contributions by RTI - openPR - January 21st, 2025
- Stem Cells Market to Reach USD 44.27 Billion by 2033, Driven by Expanding Applications and Innovations - openPR - January 21st, 2025
- Organoids at the Forefront Innovations in Stem Cell Research and Precision Medicine - openPR - January 21st, 2025
- The promising future of regenerative medicine - Yahoo Finance - January 17th, 2025
- An earful of gill: USC Stem Cell study points to the evolutionary origin of the mammalian outer ear - EurekAlert - January 11th, 2025
- Aspen Partners with Mytos to Automate Stem Cell Production for Parkinsons Therapy - Genetic Engineering & Biotechnology News - January 9th, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 9th, 2025
- Meet CIRM: the California Institute Pushing Stem Cell and Gene Therapy Research: Part 1 - The Medicine Maker - January 7th, 2025
- Regenerative Medicine Market to Experience Significant Growth, Projected to Reach $183.08 Billion by 2031. - openPR - January 7th, 2025
- Stem-cell therapies that work: 10 Breakthrough Technologies 2025 - MIT Technology Review - January 5th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 3rd, 2025
- Stem Health Plus Revolutionizes Skin Regeneration with Advanced Stem Cell Skin Graft Technology - The Manila Times - January 1st, 2025
- Allogeneic Stem Cell Transplantation Market Size to Expand Lucratively by 2031 - openPR - January 1st, 2025
- Apoptotic clearance by stem cells: molecular mechanisms for recognition and phagocytosis of dead cells - Nature.com - December 30th, 2024
- Why Medical Tourists are Choosing Mexico: The Affordable Alternative for Advanced Stem Cell Treatments - openPR - December 30th, 2024
- Induced Pluripotent Stem Cells (iPSC) Production Market: Trends, Growth, and the Role of AI - openPR - December 30th, 2024
- Stem cells 'instructed' to form specific tissues and organs - New Atlas - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Galveston County Daily News - December 28th, 2024
- Black Group Investment Partners with Zenzic Oasis to Advance Stem Cell Therapy for Personalised Medicine - Voice Of Alexandria - December 28th, 2024
- U.S. Stem Cell Therapy Market Revenue to Attain USD 17.70 Bn by 2033 - Precedence Research - December 27th, 2024
- Here are some biggest medical breakthroughs of 2024 - Medical Buyer - December 27th, 2024
- Researchers from Korea University explore how ascorbic acid and FGF4 revolutionize regenerative medicine - EurekAlert - December 27th, 2024
- Regenerative Medicine Market to Skyrocket to USD 73,084.2 Million by 2033 at a 18.5% of CAGR - openPR - December 27th, 2024
- Stem cell therapy to correct heart failure in children could 'transform lives' - Fox News - December 25th, 2024
- Advancing type 1 diabetes therapy: autologous islet transplant breakthrough - Nature.com - December 25th, 2024
- Stem Cell Therapy Market to Triple in Value, Reaching USD 52.1 Billion by 2034 at a 12.1% of CAGR - openPR - December 25th, 2024
- Stem-cell therapies: A breakthrough in treating parkinson's, cancer, diabetes, and more - The Business Standard - December 25th, 2024
- Replay 2024 : 6 Biggest Medical Breakthroughs Of 2024 - NewsX - December 25th, 2024
- Tumbling stem cells? Watch how movement plays a part in their fate - Scope - December 20th, 2024
- SCD patients free of VOEs after treatment with gene-editing therapy - Sickle Cell Disease News - December 20th, 2024
- Japan's Sumitomo to establish regenerative medicine and cell therapy joint venture - BSA bureau - December 20th, 2024
- Brain cells remain healthy after a month on the International Space Station, but mature faster than brain cells on Earth - EurekAlert - December 19th, 2024
- Reindeers Pave the Way for Regenerative Medicine - The Scientist - December 19th, 2024
- Johnson & Johnson submits application to the European Medicines Agency seeking approval of a new indication for IMBRUVICA (ibrutinib) in adult... - December 19th, 2024
- What Role Does Regenerative Medicine Play In The Management Of Type 1 And Type 2 Diabetes? - TheHealthSite - December 19th, 2024
- World's 1st Stem Cell Book on Animals, Reveals How to Extend the Lives of Pets - PR Newswire - December 17th, 2024
- Accelerated Biosciences and Stemmatters Collaborate to Offer iPSC Derived from Human Trophoblast Stem Cells - Business Wire - December 17th, 2024
- Stem Cells: Hope on the Horizon for Preterm Babies - Monash University - December 17th, 2024
- Stem Cell Transplant Offers No Difference in OS or PFS in Mantle Cell Lymphoma Compared with Maintenance Therapy Alone - OncoZine - December 17th, 2024
- Inside One Mans Journey with Multiple Myeloma - Men's Health - December 15th, 2024
- Stem Cells Market Size to Reach USD 48.83 Billion By 2034 - Exclusive Report by Precedence Research - BioSpace - December 13th, 2024
- Treating Heart Defects with Tissue-engineered Vascular Conduits - Yale School of Medicine - December 13th, 2024
- Tom Curry: England flanker has stem-cell therapy in bid to make 2027 World Cup - BBC.com - December 13th, 2024
- Stem Cell Manufacturing Market Dynamics Key Drivers Challenges and Technological Innovations - Set to reach USD 26.6 billion by 2033 - PharmiWeb.com - December 13th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of USD 54.7 Bn By 2033, At 12.6% CAGR: Dimension Market Research - The Manila Times - December 13th, 2024
- Stem cell transplantation could save the coral reefs - Ynetnews - December 13th, 2024
- Vitrification Market | Driving Innovations in Cryopreservation for Fertility Treatments and Regenerative - EIN News - December 13th, 2024
- Workshop on Regenerative Medicine concludes at SKUAST-K - Greater Kashmir - December 13th, 2024
- High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma - News-Medical.Net - December 11th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of - GlobeNewswire - December 11th, 2024
- Stem Cell Therapy Market to Worth Over US$ 2,612.92 Million By 2033 | Astute Analytica - GlobeNewswire - December 11th, 2024
- Changes in Blood Cell Production Over the Lifetime | Newswise - Newswise - December 7th, 2024
- Study reveals how stem cells respond to environmental signals, with implications for IBD and colorectal cancer - Medical Xpress - December 5th, 2024
- Stem cell therapy TED-A9 showing safety and early efficacy in trial - Parkinson's News Today - December 5th, 2024
- BMP-2 loaded scaffold for stem and immune cell recruitment in therapeutic applications - News-Medical.Net - December 5th, 2024
- Stem Cell Treatment May Help To Cure Vision Loss - Anti Aging News - December 5th, 2024
- BrainStorm Cell Therapeutics to Host KOL Webinar on Current Developments in the Treatment of Amyotrophic Lateral Sclerosis (ALS) on December 11, 2024... - December 3rd, 2024
- Stem Cell Therapy Strategic Business Report 2024 - - GlobeNewswire - December 3rd, 2024
- Enhancing the efficacy of cell transplantation therapy for stroke or traumatic brain injury - Medical Xpress - December 1st, 2024
- Apheresis in Cellular Therapies: Unlocking Quality for CAR T and Stem Cell Treatments, Upcoming Webinar Hosted by Xtalks - PR Web - November 29th, 2024
Recent Comments